Concurrency Control of Bulk Access Transactions
on Shared Nothing Parallel Database Machines

Tadashi OHMORI

Masaru KITSUREGAWA

Hidehiko TANAKA

Department of Electrical Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-Ku, Tokyo 113, Japan

ABSTRACT

This paper proposes new concurrency control schemes for Bulk
Access Transactions (BAT) on shared nothing database ma-
chines. A BAT is a transaction accessing large bulk of data, such
as a transaction updating a whole file. BATs are used for batch
jobs in database services, and many BATSs should be finished in
a short time. Thus it is necessary to execute BATs concurrently
on a database machine.

When scheduling BATs, the performance is degraded by very
high contentions of both data and resources. Therefore our strat-
egy for scheduling BATs is to reduce the contentions as much as
possible. We propose 2 Weighted Transaction Precedence Graph
(WTPG) and two schedulers using it. A WTPG is used to es-
timate the degree of the contentions in a serializable schedule.
Using a WTPG, the proposed schedulers reduce the contentions
by optimization. In our simulation, both the schedulers achieve
from 1.2 to 1.8 times higher throughput than Atomic Static Lock
and Two Phase Lock.

1 Introduction

In database services, a batch job is usually given as a Bulk
Access Transaction (BAT). A BAT is a transaction access-
ing large bulk of data, such as a transaction scanning a
large file. For instance, a BAT in a banking system reads
history-files for statistic analysis, and then updates master-
files according to this analysis. Today, database services
have to run many BATs for updating files as well as analyz-
ing data. Thus concurrency control of BATSs is necessary to
keep a consistent database. In this paper, we propose new
concurrency control schemes for BATs on ‘shared nothing’
database machines.

A database service is usually divided into the on-line ser-
vice and the off-line one. The on-line service mainly exe-
cutes short term transactions like debit-credit transactions
[1). On the other hand, most of BATs are executed in the
off-line service. Today, a long period of time is used for
the on-line service, and so the off-line service needs to fin-
ish many BATs in a much shorter time. If BATs have only
read-operations, they can be executed in the on-line service.
But, in the off-line service, many BATs update files as well
as read large files. In order to finish these BATs in a short
time, they should run concurrently on a database machine.
This paper discusses scheduling of these BATs (‘BAT pro-
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cessing’) in the off-line service.

A ‘shared nothing’ database machine consists of
computer-nodes interconnected by a network [2] [3] [4]. In
this architecture, a bulk data processing is executed on the
nodes storing necessary data. Then, when executing a BAT
on this machine, load is unbalanced among all the nodes.
Therefore concurrent execution of BATs is necessary for bal-
ancing the load and achieving high performance.

A BAT is categorized as a Long Lived Transaction (LLT)
in [5). Previous studies [6] [7] [8] [9] [1] [2] have intensively
discussed concurrency control of short term transactions.
But concurrency control of BATs has not been well discussed
so far. A feature in the processing of BATs is very high
contentions of both data and resources. Data contention
means the contention over logical access to a data-granule
[9], and resource contention means congestion of resources.

Data contention is very high in the BAT processing be-
cause coarse granules of locking are used. For instance, a
whole file is locked before starting to scan it. Then a BAT
is often blocked by one after another BAT. This ‘chain of
blocking’ reduces the number of active transactions and de-
grades the overall performance {8] [9]. Furthermore master-
files are often updated, and so these ‘hot’ files prevent high
concurrency. Resource contention is also high owing to a
bulk-operation such as scanning a file. In addition, a bulk-
operation is too expensive to abort. Therefore the BAT
processing is quite different from the short term transaction
processing, and schedulers for BATs should avoid chains of
blocking without aborting transactions.

Our strategy for scheduling BATs is to reduce
data/resource contentions in the output schedule. We pro-
pose a Weighted Transaction Precedence Graph (WTPG) for
estimating the degree of the contentions. This graph rep-
resents the cost in a serializable schedule of transactions:
We propose two schedulers using a WTPG: ‘Chain-WTPG
scheduler’ and ‘K-conflict WTPG scheduler’. For reducing
the contentions in the output schedule, these schedulers use
a global optimization and a local one respectively. In both
the schedulers, a transaction must declare its sequence of
read /write steps and their I/O demands at its start. This in-
formation is used to build up a WTPG. Our simulation tests
the performance of these schedulers in the BAT processing.
We test them also when transactions declare erroneous I/0
demands.
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The rest of this paper is organized as follows: Section 2
describes model and assumptions. In Section 3, we propose
the WTPG and the two schedulers. Section 4 discusses the
simulation results. The paper is concluded in Section 5.

2 Model and Assumptions

2.1 Target environment

Our target environment for the BAT processing is a ‘shared
nothing’ database machine. This architecture consists of
computer-nodes interconnected by a network [2] (3] [4]. Each
node is a computer with disks storing a part of database,
and these nodes execute overall database processing in par-
allel. As for file placements on these nodes, we assume the
placements reducing traffic of messages. These placements
are: range partitioning [4], partial declustering [3], and the
placement to cluster files of high affinity at a node [3].

When scheduling BATs, these placements cause unbal-
ance of load among the nodes: The range partitioning di-
vides a relation horizontally by ranges of a fixed attribute,
and each partition is located at a node [4]. Then a range-
query of a BAT hits partitions on a few nodes, and a bulk
data processing is executed there. As the result, the load
is unbalanced when executing a single BAT. In the partial
declustering, a file is partitioned over a subset of all the
nodes [3]. This placement also causes the unbalance of load
when scanning a file. This is true when placing files of high
affinity at a node.

If a BAT runs on these file placements, this unbalance
of load degrades the overall performance greatly. Therefore
concurrent execution of BATs is necessary for balancing the
load.

On a shared nothing architecture, these placements are
desirable both in the short term transaction processing and
in the mixed transaction processing. This is because the
overhead of messages are reduced. In the range-partitioning
or the placement clustering files of affinity, each node stores
most of the data accessed by a short term transaction. Con-
sequently traffic of messages are reduced among the nodes.
The partial declustering also reduces messages when sending
data from nodes to nodes. This reduction alleviates over-
head of processors, and so the performance of the short term
transaction processing is greatly improved [2] [3].

For simplicity, the rest of the paper assumes each relation
is range-partitioned on all nodes. .

2.2 Transaction model

This subsection defines the model of a BAT.

A transaction T is modeled as a sequential execution of
steps, such that each step reads or writes only one partition
at a node. This assumes each step has a range-selection
hitting one partition.

A read (or write) step to a partition must hold a shared(S)
(or exclusive(X) ) lock on it before executing the step. A
X-lock conflicts with either a S-lock or a X-lock.
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T1: r1(A:1) — ri1(B:3) — wi(A:1).
T2: r2(C:1) — w2(A:1).
T3: w3(C:1) — r3(D:3).

Figure 1: transaction model

A transaction T declares all the data to read and those
to write at its start. These declared data are named ‘lock-
declarations’. A shared (or exclusive) lock-declaration on
a locking-granule d represents ‘a transaction will read (or
write) d in the future’. A lock-declaration is replaced by a
lock-request when T requests to hold this lock. All the locks
are held until the commitment of T' for recovery, and they
are released at its commitment.

We use a partition as a locking-granule. A lock on a par-
tition d expresses a predicate lock to the partitioned range
of d. We do not use a record-level X-lock when updating
a partition, because a BAT is supposed to update a major
part of the partition.

A size of a partition is given by the number of objects in
it. One object is a unit of data for bulk data processing. e.g.
an object for scanning files is the fixed number of tracks in
a disk, such as 50 tracks.

Then the cost model of a BAT is defined as follows:

The cost of a read/write-step s is given by costof(s). This
is the number of objects accessed by s. costof(s) is the
estimated I/O demand of the step. When s reads a% of
data in a partition P, costof(s) is set to a|P|. (JP| is the
size of P.) When updating a% of P, costof(s) is set to
2a|P|. This is because a bulk update-operation must read
data before writing them. Notice that a step can access a
part of a partition if indices can be used.

Bulk-updated data are written back to disks immediately,
and so we ignore I/O demand from the commitment of a
transaction to its completion.

We use a centralized concurrency control owing to the
partition level locking. The centralized control node (CN)
manages a lock table of partition granules. When a lock is
granted to a step of a transaction T, CN sends T to the
node storing this partition.

Erample2.1: Figure 1 illustrates three transactions T1,
T2, and T3. ‘stepl — step2’ means a sequential execution of
the steps. In the rest of the paper, r;(P : C) (or w(P:C))
refers to a read (or write) step of cost C to a partition P by
a transaction T}. (C is the number of objects to be accessed)
This figure assumes that 100% of a partition is read and a
half of it is updated. The commitment step at the last of
each read/write-sequence is not displayed in the rest of the
paper. O

3 Schedulers for BAT

3.1 Weighted transaction graph

Our strategy for scheduling BATs is to reduce data/resource
contentions in the output schedule. For estimating the de-
gree of the contentions, we attach weights to edges of a



transaction precedence graph. These weights represent the
costs for executing transactions.

Definition 1 Weighted Transaction Precedence Graph
(WTPG) is a graph < N, C, E, w > such that:

1. N: the set of nodes representing transactions. (T0:
the initial transaction. T'f: the final transaction. Ti and
Tj are general ones.)

2. C: the set of conflicting-edges (T%,Tj). (Ti,Tj) is a
pair of edges Ti — Tj and Tj — Ti. (T%,Tj) means “Ti
conflicts with T'j in the serializable order”. This edge is
generated only when both T'i and T'j have issued conflicting
lock-declarations on a locking-granule. When it has been
determined that T precedes T'j in the serializable order,
(T4,Tj) is replaced by a precedence-edge Ti — Tj. This
operation is called ‘resolving (T, Tj) into Ti — Tj’.

3. E: the set of precedence-edges Ti — Tj. Ti — Tj
means “T'i precedes T'j in the serializable order”. Ti — T'j
is generated only by resolving (T,Tj). (for all T, there
exist the edges T0 — T'i and Ti — Tf).

4. w gives a weight w(Ti — Tj) for all Ti — Tj in EUC.
This weight is the number of accessed objects:

o “w(T0 — Ti) = k” means “At the present schedule, T4
must access k objects before Ti commits”.

o “w(Ti — Tf) = k” means “After T has committed,
Ti must access k objects before T'i completes”.

o “w(Ti — Tj) = k” means “After Ti has committed,
Tj must access k objects before T'j commits”.

a

Ezample3.1: Figure 2-(a) shows the WTPG where all the
transactions in Figure 1 have just started. In the rest of the
paper, a WTPG is depicted as follows: A precedence-edge
is depicted by a solid arrow. A conflicting-edge is repre-
sented by a pair of shaded arrows between nodes. A weight
of an edge is depicted beside the edge. “Tj — Ti" also
expresses “T'i — Tj”. e.g. In Figure 2-(a), the conflicting-
edge (T'2,T3) is a pair of edges T2 — T3 of weight 4 and
T2 + T3 of weight 2.

In Figure 2-(a), the weights are set as follows:

w(T1 — T2) is set to 1: If T'1 precedes T2, T'2 can start
w2(A:1) only after T'1 has committed and has released the
X-lock on A. Therefore, after T'1 has committed, T2 must
access 1 object before its commitment.

Since T'1 has just started, T'1 must access 5 objects before
its commitment from now. Thus w(T0 — T'1) is set to 5.

From the cost model in Section2, w(Ti — Tf) is set to 0
for all Ti. Tf and its edges are not depicted in the rest of
the paper. O

In Definition 1, only w(70 — T'i) depends on the present
state of the scheduling. As a schedule proceeds, w(T0 — T'i)
is adjusted as follows: When a step of T' ends a bulk data
processing of 1 object, T'i issues a message to the control
node and decrements w(T'0 — T1i).

Since the transaction model in Section 2.2 accesses objects
sequentially, each weight in a WTPG represents the shortest
possible time between two events in a schedule.
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When a new transaction starts, new weights in a WTPG
are set as follows:

At the start of a transaction T'i, T'i declares its sequence
of steps {sp — 81 — ... — sy} and their I/O demands
costof (s;), as defined in Section2.2. Let due(s;) be the
number of objects as follows: ‘due(s;)=k’ means “After the
start of s;, T'i must access k objects before its commitment”.
due(s;) is defined by the formulae:

due(sy) = costof(sn)-

due( s; ) = costof(s;) + due( siy1). (i< N)

Then, at the start of T4, w(T0 — Tf) is set as follows:
w(T0 — T'i) = due(so).

When a lock-declaration of a step s; of Ti conflicts with that

of a step s; of T'j, the weights on (T, T’j) are set as follows:
w(Tj — Ti) = due(s;).

w(Ti — Tj) = due(s;).
w(Ti — Tj) and w(Tj — Ti) are set to the largest values
among the values in the above formulae.

For all steps s; of a declared transaction, due(s;) is at-
tached to the lock-declaration of s; in the lock table. Thus
all the weights on edges of Ti are computed when T'i starts.

3.2 Scheduler using global optimization

Using a WTPG, the degree of data/resource contentions in
a schedule is estimated as follows:

Suppose that all the conflicting-edges of a WTPG have
been resolved as specified in a serializable order S. e.g.
when S={T1 — T2,T3 — T2} is given, the WTPG of
Figure 2-(a) is changed into the WTPG of Figure 2-(b).

Then, in this WTPG, the length of its critical path from
TO to Tf is the earliest possible completion time of a total
schedule. (S is the serializable order of this schedule.) The
shorter this critical path is, the less contentions of both data
and resources occur.

In the rest of the paper, a ‘full SR-order’ refers to the seri-
alizable order resolving all the conflicting-edges of a WTPG.
A ‘WTPG resolved by a full SR-order S’ is the WIPG
whose conflicting-edges has been resolved as specified in S.
A ‘critical path’ is the longest path from 70 to Tf in a
WTPG.

Ezample 3.2: In Figure 2-(a), a full SR-order W =
{T1 - T2,T3 — T2} resolves all the conflicting-edges of
the WTPG so that it has the shortest critical path. Figure
2-(b) shows the WIPG resolved by W. Its critical path is
T0 — T1 — T2 of length 6.



When the WTPG of Figure 2-(a) is resolved by another
full SR-order {T'1 — T2 — T3}, its critical path has the
length of 10 as shown in Figure 2-(¢). Clearly a chain of
blocking {T'l — T2 — T3} occurs in Figure 2-(c). O
Then our scheduling strategy is:

The serializable order of the output schedule
should be the full SR-order W, where the WTPG
resolved by W has the shortest critical path.

This strategy uses a global optimization for reducing the
contentions in a schedule, because the future contentions
must be predicted. The contentions are reduced by enforc-
ing this globally optimized serializable order W to the out-
put schedule.

It is NP-hard to compute the above W in any WTPG
(see the theorem3 in the appendix). Thus we restrict a
form of a WTPG into a ‘chain-form WTPG’. In a given
‘chain-form WTPG’, W is computed by O(N?). (N is the
number of nodes in the chain-form WTPG). This algorithm
is described in the appendix.

Definition 2 A chain-form WTPG is the WTPG such that
all the nodes except both 70 and T f are labeled 1,..., N as
follows: for all k in 2,3,..., N — 1, n[k] conflicts only with
either n[k — 1) or n[k + 1] in the serializable order. (n[k] is
the node of label £.) O

Figure 3 shows a chain-form WTPG. (T0 is labeled 0. Tf
and its edges are not depicted.) WTPGs in Figure 2 are also
chain-form WTPGs.

Using the above scheduling strategy, the scheduler CC1
behaves as follows when a lock-request ¢ is issued on a
locking-granule d:

CCI1(INPUT g: lock-request on d: data )
Step0: If q is the start step of a new transaction T, CC1
adds T into the WTPG and tests if it is still a chain-form
WTPG. If this WTPG is not a chain-form, T is aborted.

Step!: If ¢ conflicts with the lock holding d, ¢ is blocked.

Step2: Compute a full SR-order W, such that the WIPG
resolved by W has the shortest critical path.

Step3: If the schedule gets inconsistent with W by granting
q, ¢ is delayed. Otherwise ¢ is granted.
a

The delayed lock-requests or the aborted ones are resub-
mitted to CC1 after a fixed delay. The Step0 of CC1 keeps
a WTPG in a chain-form. This ‘chain-form’ constraint is
test by the depth first traverse. By the Step3, the output
schedule is kept consistent with W. The CC1 is named the
‘Chain-WTPG scheduler’ or ‘CHAIN’.

Ezample 3.3: In the WTPG of Figure 2-(a), W = {T1 —
T2,T3 — T2} makes the shortest critical path. Suppose
that the step r2(C:1) of T2 in Figure 1 is submitted to
CHAIN. If this step is granted, (T'2,T3) is resolved into
{T2 — T3}. This is inconsistent with W. Thus CHAIN
delays r2(c:1). O
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3.3 Scheduler using local optimization

When conflicting lock-requests are often issued to a part of
database (namely the hot set ), CHAIN cannot start many
transactions owing to its chain-form constraint. This case
also degrades the performance of BATs. In the BAT pro-
cessing, master-files are very ‘hot’ files. Thus schedulers
should accept any form of a WTPG without using a global
optimization.

When a lock-request ¢ has been just granted, the next
function £(g) estimates the degree of the contentions in the
present schedule.

£(q : lock-request of a transaction T)
Stepl: Make the WTPG where ¢ has been just granted.
Identify be fore(T) and after(T) in this WTPG. They are a
set of transactions which precede 7T in the serializable order
and a set of ones which T precedes respectively. If ¢ causes
a deadlock, return £(gq) = oo.

Step2: For all the conflicting-edges (T4, Tj) such that Ti €
before(T) and Tj € after(T), resolve it into T'i — T'j.

Step3: Delete all the remaining conflicting-edges in the
WTPG. Then £(g) is the length of the critical path from
T0 to Tf in the WTPG.

a

Ezample 8.4: Figure 4 illustrates the above procedure.
For simplicity, w(T0 — T') is set to 0 for all Ti. T0 and
its edges are not displayed in the figure. In the WIPG
of Figure 4-(a), suppose that T5 now issues a lock-request
¢ which conflicts with T6. Then, if ¢ has been granted,
{T5 — T6} is generated. Therefore before(T5) = {T4} and
after(T5) = {T6}. Then (T4,T6) is resolved into T4 — T6
as shown in Figure 4-(b). The critical path in Figure 4-(b)
is T4 — T'6 of length 10. Thus £(¢) = 10. O

£(q) is computed by O(maz(n,e)), (n: the number of
nodes, e: the number of edges in a WTPG): the Step2 of
£(g) is computed by the depth-first traverse, and its Step3
is by the topological sort.

Let C(g) be the set of lock-declarations conflicting with
a lock-request q. C(q) is found in the lock-table. Then our
scheduling strategy is:

a lock-request ¢ is granted only when ¢ has the
smallest value of £(q) in C(q).
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This strategy reduces the contentions by a local optimiza-
tion, because it estimates only the degree of the contentions
occurring at the present schedule.

Using this strategy, the scheduler CC2 behaves as follows

when ¢ is issued to a locking-granule d:

CC2( INPUT g: lock-request on d: data)
Step1: If q conflicts with the lock holding d, ¢ is blocked.

Step2: Compute £(q). If ¢ causes a deadlock, ¢ is delayed.

Step3: If ¢ has the smallest value of £(q) in C(g), g is
granted. Otherwise ¢ is delayed.

a

Ezample 3.5: In Ezample 3.4, let ¢’ be a lock-request of
T6 such that ¢’ conflicts with g of T'5. Figure 4-(c) shows the
WTPG where ¢’ has been granted in the WTPG of Figure
4-(a). (T'4,T6) has been deleted by the Step3 of £(¢') in
this figure. Since £(g) = 10 > £(¢’) = 1, CC2 delays the
lock-request ¢ of 7’5 when ¢ is submitted.
a

For alleviating the complexity at the Stepd of CC2, we
limit the size of C(g) to K (= 0,1,2,...) by the next con-
straint:

Each lock-declaration may conflict with K lock-
declarations at most.

At the start of a new transaction T, CC2 tests this ‘K-
conflict’ constraint. If this test fails, T is aborted.

When K is fixed, the Step3 of CC2 is computed by O(K x
maz(n,e)). The CC2 under this constraint is named ‘K-
conflict WTPG scheduler’ or ‘K-WTPG’. Even K-WTPG
of K = 1 accepts a WTPG which is not a chain-form.

3.4 Reducing control overhead

For reducing the control overhead, CHAIN and K-WTPG
estimate the degree of the contentions again only when

1) a fixed period has elapsed after the last computation, or
2) a transaction commits or starts after the last computa-
tion.

Furthermore K-WTPG recomputes £(q) if
3) a new precedence-edge is generated.

If none of the above conditions hold, CHAIN uses the
full SR-order W which was most recently computed at the
Step2 of CC1. In K-WTPG, £(q) is set to its most recently
computed value if it exists.
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4 Performance Evaluation

4.1 Simulation model

This section tests the performance of four schedulers in the
BAT processing. Schedulers we test are: Chain-WTPG
scheduler (CHAIN), K-conflict WTPG scheduler of K=2
(K2), Atomic Static Lock (ASL) in [9], Cautious Two Phase
Lock (C2PL) in [10], and NODC (NO Data Contention).
NODC grants any lock at any time for clarifying the upper
bound of performance. C2PL is a variant of the strict two-
phase lock in cautious schedulers [10]. C2PL has a trans-
action precedence graph (i.e. the WTPG without weights
in Section3.1) for predicting a deadlock. In C2PL, a lock-
request ¢ is granted if and only if ¢ is not blocked and does
not cause a deadlock. C2PL delays g if ¢ causes a deadlock.
ASL starts a transaction T if and only if T' can hold all the
necessary locks at its start. Notice that these schedulers
have no deadlock.

Figure 5 displays the simulation model of a shared noth-
ing database machine. Its parameters are listed in Table 1.
This model has one control node and several data-processing
nodes. NumNodes is the number of data-processing nodes.
Partitions are located at data-processing nodes, where
node’s ID = (partition’s ID modulo NumNodes). Among
NumParts partitions, NumH ots partitions are designated
as a hot set if necessary.

A new transaction T arrives at the control node with ar-
rival rate A in the exponential distribution. In each exper-
iment, a new transaction is given its sequence of steps by
“Paitern: stepl — ... — stepN”. This means a sequential
execution from step! to stepN. Each step is an access to
a partition, and a step is expressed as defined in Ezemple
2.1 of Section 2.2. This model causes the unbalance of load
when executing a single BAT on a shared nothing architec-
ture. Since our interest is the scheduling of BATs updating
files, each transaction have update-operations to files.

The centralized control-node (CN) is modeled as a CPUs-
peed MIPS processor. CN manages the concurrency control
of partition locking-granules. When a lock of a partition is
granted to T, T is sent to the data-processing node stor-
ing this partition. When T commits (or starts), CN spends
commiltime (or startuptime) as a coordinator of two-phase
commitment.

The model of a data-processing node (DN) is given by
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Tablel: table of parameters

Parameter | Meaning Value
NumNodes | number of data-processing nodes 8
NumParts | number of partitions 16 ~ 40
NumHots number of hot partitions 4~ 32
mpl multi programming level infinite
A transaction arrival rate 0~15TPS
CPUspeed | CPU speed of the control node 4 MIPS
netdelay network delay time negligible
msgtime message send/receive CPUtime 2 ms
startuptime | transaction startup CPUtime 2 ms
committime | commitment CPUtime 7 ms
ddtime CPUtime of deadlock detection in C2PL | 1 ms
kwtpgtime | CPUtime of computing £(q) in K2 10 ms
chaintime | CPUtime of computing the globally 30ms
optimized SR-order in CHAIN
toptime CPUtime of chain-form test 5 ms
ObjTime 1 object processing time at a node 1000 ms
keeptime period of control-saving 5000 ms
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ObjTime. ObjTime is the time for processing 1 object at a
DN. (One object is a unit of data for bulk data processing,
as defined in Section 2.2.) A DN executes transactions in a
round robin manner: i.e. when a transaction T ends a bulk
data processing of 1 object, the DN stops T and starts the
next waiting transaction. At this time T sends a message
to CN for adjusting the weight of the WTPG, as described
in Section3.1. T is sent back to CN after ending one step.

This simple model for a DN is justified because a bulk-
operation is implemented by pipeline between processors
and disks. In addition, a bulk-operation can be executed
in I/O bound region when most of the accessed data is fil-
tered out [11]. Control overheads of nodes such as initiating
a cohort is ignored because they are far smaller than Obj-
Time.

In Tablel, the values of concurrency control parameters.

ddtime, chaintime, and kwipgtime have been determined by
instruction counts of the control programs. ObjTime is set
to 1 second. This corresponds to scanning about 60 tracks
(2.5 mega byte) per disk in FDS-R. Since ObjTime is much
larger in practical cases, this setting makes us overestimate
the overhead of control.

NumNodes is set to 8, and NumParts are chosen among
the values in Table 1. Every 8 partitions represents a range-
partitioned relation on 8 nodes. The values of NumParts in
Table 1 are far smaller than those of the simulation studies
for short term transactions in [6] [8] [2]. This is because a
database has only tens of files scanned by BATs, while these
files have thousands of fine locking-granules for short term
transactions.

As performance metrics, we use mean response time RT
(the time from the creation of a transaction to its comple-
tion) and throughput (Number of completed Transactions
Per Second, TPS). At each measured point with a fixed ar-
rival rate, Our simulation has run during 2,000,000 clocks
(1 clock = 1ms) with multi programming level of infinity.

4.2 The case of blocking

In the BAT processing, high data contention degrades per-
formance owing to blocking and a hot set. The first ex-
periment evaluates how well the schedulers avoid chains of
blocking.

Experiment1:

Patternl: r(Fi:1)— r(F2:5) — w(F1:0.2) — w(F2:1),
with NumParts = 16. The two partitions F1 and F2 are
randomly chosen among NumParts = 16 partitions, each
of which has the size of 5 objects.

This Patiterni is a model of the following BATs: ‘join the
selected result of F1 with F2, and update these partitions
depending on the joined result’. The first two steps of Pat-
ternl require X-locks, and cause chains of blocking. The
first step r(F1:1) reads 20% of data in F1 using its indices,
and r(F2:5) scans F2 without indices. The last two steps
update 10% of the read data. The smaller operand in the
join operation is accessed at first for hashing algorithms [4].

Figure 6 and 7 show the mean response times and the
throughputs as a function of the arrival rate respectively.
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In Figure 6, we compare the schedulers by the through-
puts at the mean response time of 70 seconds. Looking at
this figure, ASL has the best throughput because ASL has
no blocking. In contrast, chains of blocking has degraded
the throughput of C2PL greatly. ASL, CHAIN, and K2 have
from 1.9 to 2.0 times higher throughput than C2PL. Com-
paring ASL with CHAIN and K2, we can see that CHAIN
and K2 avoid the chains of blocking as successfully as ASL
does. Furthermore CHAIN does not outperform K2 largely.
This implies the scheduling strategy of K2 works as success-
fully as that of CHAIN.

In Figure 6, resources are saturated at the arrival rate of
As = 1.08 TPS. (because the mean response time of NODC
is 70 seconds at A5). Ag is much greater than the arrival
rates where the response time of the other schedulers is 70
seconds. This clarifies a feature in the BAT processing where
BATs update files. That is, high data contention degrades
performance at much smaller arrival rate than saturation
of resources does. In the short term transaction process-
ing, this thrashing by data contention (‘DC thrashing’ in
[9]) occurs near or over the arrival rate where resources are
saturated.

This high data contention limits useful utilization of re-
sources. In Figure 7, the mean useful resource-utilization ra-
tio of each scheduler is expressed by the ratio of its through-
put to that of NODC. (the ‘useful’ utilization is the utiliza-
tion except that used by aborted transactions). In this fig-
ure, the utilization ratio of ASL, CHAIN, or K2 is not very
high (about 64 % = 0.7 TPS/1.1 TPS).

Clearly resources of a node are saturated when this node
executes a bulk-operation. The useful utilization is low in
Experiment 1 because the number of concurrently running
BATs is limited by high data contention.

4.3 The case of a hot set

The second experiment tests the schedulers when high data
contention occurs on a hot set.

Experiment2:

Pattern?: x(B:5) — w(F1:1) — w(F2:1)., NumHots =
4, 8, 16, or 32. The partition B is chosen randomly among 8
‘read-only’ partitions, and each node stores one ‘read-only’
partition of size 5 objects. The two partitions F1 and F2
are chosen randomly among the other NumHots partitions,
each of which has the size of 1 object. The read/write steps
request S/X-lock respectively. With smaller NumHots,
higher contention occurs on the hot set. .

Figure 8 shows the throughputs at RT' = 70 seconds as a
function of NumHots.

ASL keeps a WTPG to be a set of isolated points. Thus
ASL can start the smallest number of transactions, and
achieves the lowest throughput in this figure. At NumHot
= 4 or 8, the chain-form constraint of CHAIN also degrades
its throughput.

K2 performs best because it has no constraint on the
form of a WTPG, and because it starts the highest number
of transactions. Although C2PL also permits any WTPG,
C2PL is outperformed by both K2 and CHAIN at NumHots



= 16 or 32. This is explained as follows: C2PL has higher
congestion of resources (about 70% in this figure) at these
NumHots, and so the blocking time of a transaction is longer
than that at NumHots = 4 or 8. As the result, C2PL has
chains of blocking at the last two steps of Pattern2, and is
outperformed.

The next pattern of a transaction Pattern3 is the same as
Pattern? except that the blocking time of a transaction is
longer than that in Experiment2.

Experiment3:

Pattern8: r(B:4)—w(F1:1)—w(F2:2) ., with NumHots=8.
The three partitions B, F1, and F2 are chosen in the same
way as that in Experiment2. But the first step and the last
step in Paitern$ have different 1/O demands from those in
Experiment2. Consequently the blocking time is longer than
that in Experiment2.

Figure 9 displays the mean response times as a function of
the arrival rate. The throughput of C2PL at RT = 70 sec-
onds is 0.5 TPS, 30% lower than 0.7 TPS at NumHots = 8
in Experiment2. From this unstable property, we can see
that C2PL is very sensitive to the blocking time. In con-
trast, CHAIN and K2 keep from 1.2 to 1.8 times higher
throughput than ASL and C2PL in this experiment. This
stable performance are desirable in the BAT processing, be-
cause the BAT processing does not have a fixed workload:
it has large changes in both the blocking ratio and the fre-
quency of access to hot sets.

From these three experiments, we can see that high data
contention limits the inter-transaction parallelism of BATs
when they update files. Therefore the intra-transaction par-
allelism are necessary for high (greater than 90%) useful
utilization of resources. An solution is to distribute files
randomly on all the nodes of a shared nothing database ma-
chine. This file placement benefits parallelism of BATs [7],
but the message overhead degrades performance of the short
term transaction processing, as described in Section 2.1.

4.4 Test of sensitivity

The fourth experiment tests CHAIN and K2 when transac-
tions declare erroneous I/O demands.

Experiment4:

Patternl used in Experimentl, with NumParts=16.

The I/O demand of each step is estimated at C by the
formula: C = Cox(1+z), where Cy is the exact 1/0O demand
of the step, and z is the error ratio. z is given by the normal
distribution where the mean is 0 and the standard deviation
isg. (C = 0 when z < —1). With greater ¢, CHAIN and K2
estimate the degree of data/resource contentions incorrectly,
and so chains of blocking cannot be avoided.

As the lower bound of CHAIN (or K2), we use the sched-
uler CHAIN-C2PL (or K2-C2PL). CHAIN-C2PL (or K2-
C2PL) is C2PL except that a WTPG must keep the con-
straint of ‘chain-form’ in Section3.2 (or ‘K-conflict’ in Sec-
tion3.3). If a new transaction does not keep these con-
straints, these schedulers delay its start.

Figure 10 displays the throughputs at RT=70 seconds as
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a function of o. At o = 1, CHAIN (or K2) achieves 4.6% (or
13.8%) lower throughput than it does at o = 0. At this high
error ratio of & = 1, they still keep much higher throughput
than C2PL.

K2 is more sensitive to the error ratio than CHAIN. Since
CHAIN-C2PL has the high throughput of 0.58 TPS, the
insensitivity of CHAIN is due to its chain-form constraint.
In contrast, K2-C2PL has the low throughput of 0.36 TPS.
Thus we can see that K2 avoids chains of blocking mainly
by using weights in a WTPG.

5 Conclusion

This paper has proposed new concurrency control schemes
for Bulk Access Transaction (BAT) on shared nothing
database machines. As file placements, we have assumed the
placements reducing overhead of messages, such as range-
partitioning or partial declustering.

We have proposed Weighted Transaction Precedence
Graph (WTPG) and two schedulers using it: Chain-WTPG
scheduler (CHAIN) and K-conflict WIPG scheduler (K-
WTPG). Both schedule BATs so that data/resource con-
tentions are reduced. For building up a WTPG, a trans-
action must predeclare its sequence of steps and their I/0
demands.

CHAIN predicts the globally optimized serializable order
W at first. CHAIN grants a lock-request only if it is consis-
tent with W. A WTPG in CHAIN must be a ‘chain-form’
for computing this W in a polynomial time. On the other
hand, K-WTPG grants a lock-request ¢ only if ¢ causes the
lowest contentions at the present schedule.

K-WTPG does not predict the contentions occurring in
the future, while CHAIN does. Thus the scheduling strategy
of CHAIN is more strict than that of K-WTPG. But K-
WTPG accepts any form of a WTPG, while CHAIN does
not.

Our simulation has clarified the following results:

1: When the blocking ratio of a lock-request is very high,
CHAIN and K-WTPG avoid chains of blocking as perfectly
as Atomic Static Lock (ASL in [9]) does. In this case,
CHAIN is a little better than K-WTPG, which in turn out-
performs Cautious Two Phase Lock (C2PL in [10]) greatly.

2: When high data contention occurs on a hot set
like master-files, K-WTPG is better than both C2PL and
CHAIN, which in turn outperform ASL largely.

3: K-WTPG is more sensitive to erroneous I/O demands
than CHAIN is. But both avoid chains of blocking success-
fully even when very erroneous I/O demands are declared.

4: In the BAT processing, high data contention limits the
inter-transaction parallelism of BATs. Therefore the intra-
transaction parallelism are necessary for utilizing resources
very usefully.

In our simulation, CHAIN and K-WTPG achieve from
1.2 to 1.8 times higher throughput than ASL and C2PL do.
This superiority depends on file placements of shared noth-
ing architectures. Thus the impact of the intra-transaction
parallelism should be analyzed both in the BAT processing
and in mixed workloads. In mixed transaction processing,



different schedulers are necessary for different classes of jobs.
CHAIN and K-WTPG are desirable for the class of BATs
when shared nothing database machines use the file place-
ments reducing the message overhead.
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Appendix:
Optimization algorithm of Chain-WTPG scheduler

This appendix describes the algorithm to compute the full SR-
order W, such that W makes the shortest critical path in any
chain-form WTPG G(1, N) in Figure 3 in Section 3.2.

The following notations are used:

1. with k fixed, n[k] is abbreviated to nk.

2. G(i, ) refers to the subgraph of G(1, N) which consists of
n0 and {n[i], n{i +1), .., n[j]}.

3. “(n[i], n[i + 1]) is set upwards’ means that this edge is re-
solved into n[i] «— n[i +1]. ‘(n[i],n[i + 1]) is set downwards’
means that it is resolved into n[i] — n[i +1}.

4. min(A, B) (or maz(A, B)) is the minimum (or the maxi-
mum) between A and B.

We can find the shortest critical path in G(k, N) from the fol-
lowing structural parameters. Each member of these parameters
is referred to by parameter.member.
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Figure 11: examples of L[k] and R[]

Definition 3 L[k] and R[k] are the triplets [curr,crit,rev] de-
fined below:

Suppose that (r[k — 1], n[k]) has been set downwards in G(k—
1, N). Let S1(k—1, N) be the full SR-order to make the shortest
critical path in this G(k—1, N). Then L[] is defined on the edge
n[k — 1} — n[k] as follows:

1. L{k}.crit = the length of the shortest critical path in the
G(k — 1, N) resolved by S1(k — 1, N).

2. L[k).rev = the smallest label among the labels i, such that
(n[i], n[s + 1)) is set upwards in Si(k — 1,N). Lfk}.rev = N if
such the label does not exist.

3. L{k}.curr : the length of the path n0 — n[k — 1] — n{k] —
.. = n[L{k].rev).

Suppose that (n[k — 1},n[k]) has been set upwards in G(k —
1, N). Let S2(k—1, N) be the full SR-order to make the shortest
critical path in this G(k—1, N). Then R[k] is defined on the edge
n[k — 1] — n[k] as follows:

4. R[k].crit = the length of the shortest critical path in the
G(k — 1, N) resolved by S2(k — 1, N).

5. R[k].rev = the smallest label among the labels i such that
(n[i], n[i + 1)) is set downwards in S2(k — 1, N). R{k].rev =N if
such the label does not exist.

6. R[k].curr = the length of the critical path from n0 to n{k-1]
in the G(k — 1, R[k].rev) resolved by S2(k — 1, N).
=]

Ezample 4.1: Figure 11-(a) illustrates G(2,4), L[4}, and R[4].
Figure 11-(b) shows the case of computing L[3]: Suppose that
(n2, n3) has been set downwards. Then, between n3 — n4 and
nd4 — n3, the former makes the shorter critical path of length 8.
So 51(2,4) = {n2 — n3 — n4 }. In 51(2,4), there is no n[i] such
that (n[s), n[i + 1]) is set upwards. The critical path in Figure
11-(b) is n0 — n2 — n3 — n4. Thus we set L[3] = [8,8, nd)].
R[3] is similarly computed in Figure 11-(c).

Theorem 1 Suppose that L[i] and R[i] for all i = k+1 to
N are given in G(k,N). Then the following formulae compute
S1(k, N), S2(k, N) in Definition 3 and the full SR-order S(k, N)
to make the shortest critical path P in G(k, N):
S1(k,N) = {n[k] — n[k +1] — ... = n[L[k + 1).rev]}
U S2(L[k + 1].rev, N).
S2(k,N) = {n[k] — n(k + 1]~ ..
U S1(R[k +1).rev,N).
such that S1(i, ) = 52(i,i) = ¢ for all 5.

« n[R[k + 1}.rev]}

The length of P = min(L[k + 1].crit, R[k + 1}.crit).

if Lk 4 1).crit < R[k + 1}.crit then
S(k, N) = S1(k, N).
else

S(k, N) = S2(k, N).



Ezample 4.2: In Example 4.1, L{3].crit = 8 > R[3].crit = 6.
Hence S(2,4) = 52(2,4) = {n2 — n3} US1(3,4) = {n2 — n3 —
n4}. 0

Theorem 2 Suppose that G(k — 1, N) and all the parameters
L[] and R[] from i = k +1 to N are given. Then L[] and R{k]
are computed by O(N — k). O

Outline of the proof.

We show the algorithm Lcomp() for computing L{k], in the C
language-like notation. The variables a[k], b[k] and r{k] are
the weights defined in Figure 3.

Leomp() {
/% procedure for Li[k] */
temp = L[k+1].curr - x{kx] + rlx-1] + a[k];
if ( temp <= L[k+1].crit )
Li[x] = [ temp, L[k+1].crit, L[k+i].xev ];
else {
Li[x].crit
= min( max(V(h), R[h+1].crit)); /¢ EXPR1 »/
for all h = k+1 to L[k+i].rev

Li[(kx].rev = hO;
Li(k].curr = C(hO0);
/* h= hO takes the minimum in EXPR1.
* C(h) and V(h) are defined as follows:
V(k-1) = C(k-1) = r[k-11;
V(h) = max(r[h], V(h-1)+a[h]);(k =< h)
+ C(h) = C(h-1) + alhl; ( k =< h)
«/
} /* end of L1[k] #*/
/# procedure for L2[k]:s/
L2[x] .curr = r[k-1] + a{x];
L2{x].crit = max(L2[k].curr, Rlk+1].crit);
L2[k].rev =k; /+* end of L2[k] */
it ( L1[k].crit <= L2[k].crit )
LIx] = Li[x];
else
Lix] = L2[x];

LN J

}

In Lcomp(), L[k] is set to either L1[k] or L2[k] according to
their values of crit. L1[k] represents L{k] such that (n[k], n[k+1])
has been set downwards. L2[k] does when this edge has been set
upwards. L2[k] assumes only the case of resolving G(k — 1, N)
by {n[k — 1] — n[k]} U S2(k, N).

L1[k) is computed for the case where G(k — 1, N) is resolved
at first by {n[k — 1] — n[k]} US1(k, N). In this case, a new path
PO ={n0—n[k—1] — n[k] = n[k+1] — ... = n(L[k +1].rev)
} is generated. The variable temp in Lcomp() is the length of PO.

If PO is longer than the shortest critical path of G(k,N), P0
is the critical path when using {n[k —1] — n[k]}US1(k, N). But
PO may get shortened by setting upwards (a[h], n[h + 1]) in PO.
i.e. using S(h) = {n[k — 1] — n[k] — ... — n[h]} US2(k, N)
where k+1 < h € L(k+1).rev. The expression EXPR1 in Lcomp()
computes L1[k] in this case.

In EXPR1, C(h) is the length of the path P(h) = n0 — n[k —
1] — n[k] — ... — n[k]. V(h) is the length of the critical path
in the G(k — 1, b) resolved by P(k). S(k) has the critical path of
length maz(V (), R[h+1}.crit) in G(k—1, N). So EXPR1 correctly
finds h = k0 such that S(h0) makes the shortest critical path in
G(k =1, N). Thus L1[k] is computed by O(N — k).
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The other cases for L1[k] are trivial and they are omitted here.
The algorithm of R[k] is described in the lemma 1.
O

Computing L[k] and R[k] from k = N to 2, L[2] and R[2] are
computed. Then Corollary 1 holds from theorem 1 and theorem
2.

Corollary 1 In a chain-form WTPG G(1, N) of Figure 3, the
full SR-order making the shortest critical path is computed by
O(N?). O

Lemma 1 In theorem 2, R[k] is computed by O(N — k).

This proof is similar to that of theorem 2 and omitted. The
following algorithm Rcomp() computes R[k] from G(k, N) with
R[i] and L[§] (k+1<i < N).

Rcomp() {
/* procedure for Ri[k]
temp = R[k+i].cuxrr + b[k];
if ( max( r[x-1], temp ) <= R[k+1].crit )
Ri[x] = [ temp, RIk+1].crit, R[k+1].rev ];
else if ( max(r(k-1], temp ) == rik-1] )
Ri[k] = [ rlk-1], r{k-1], R[k+i].rev J;
else {
R1lk].crit
= min( max( V(h), L[h+1).crit) ); /+ EXPR2 +/
for all h = k+1 to R[k+1].rev

*/

Ri[k].rev = hO;
Ri[k].curr = V(h0);

/* h = hO takes the minimum in EXPR2. */
}

/* procedure for R2[k] =/
R2[k].curr = max( r[k]+b(kl, rlk-1] );
R2[k] .crit = max( R2[k].curr, L[k+i].crit);
R2[(k] .rev = k;
if ( Ri[x).crit <= R2[k].crit )

R(x] = Ri[x]; :
else

Rlx] = R2[k];
}

In Rcomp(), R1[k] represents R[k] such that (n[k], a[k+1]) has
been set upwards. R2[k] does when setting this edge downwards.

The expression EXPR2 assumes S(h) = {n[k — 1] «— n[k] —
.. «— n[h]} US1(k, N). It finds h = k0, where S(h0) makes the
shortest critical path in G(k — 1, N) .

The variable V(h) is the length of the critical path in the G(k—
1,h) resolved by S(h). C(h) is the length of the path n0 —
n[k] — n[h —1] = ... = n[k — 1]. They are computed by the
formulae:

V(k-1) = C(k-1) = r(k-11;

C(h) = C(h-1) - r(h-1] + r[h] + blhl; (k< h)

V(h) = max( C(h), V(h-1) ); (k< h)

a

Theorem 3 It is NP-hard to compute the full SR-order which
makes the shortest critical path in any WTPG.

Outline of the proof: The static general job-shop scheduling prob-
lem JS is represented by a disjunctive graph [12]. This graph is
the WTPG where all the outgoing edges of a node have the cost
of the node. Since JS is NP-hard, this theorem holds. O



