Scheduling Batch Transactions on Shared-Nothing Parallel
Database Machines: Effects of Concurrency and Parallelism

Tadashi OHMORI

Masaru KITSUREGAWA

Hidehiko TANAKA

Dept. of Electrical Engineering, The University of Tokyo, JAPAN

Abstract This paper discusses concurrency-control
scheduling of batch transactions on Shared-Nothing
(or ‘loosely-coupled’) multiprocessor database machines.
Usually, batch transactions access large bulks of data
for data analysis or periodic database-update. This pa-
per tests various schedulers for these batch transactions,
and examines how well the schedulers perform when
both inter-transaction parallelism and intra-transaction
parallelism are limited. By using the best-performing
schedulers for batch transaction processing, Shared-
Nothing machines can freely tune their data-placements
for short-term transaction processing. Simulation re-
sults show that the two new schedulers proposed in our
previous study [13] are the best performers in various
workloads.

1 Introduction

Today’s On-Line Transaction Processing (OLTP) appli-
cations have heavy mixed-workload of short-term trans-
actions and batch transactions. For these applica-
tions, Shared-Nothing (or ‘loosely-coupled’) multiprocessor
database machines have been proposed as attractive plat-
forms, such as Tandem VLX/CLX series [14], Gamma [7)
and Teradata DBC1012 {6]. These machines are composed
of loosely-coupled computer-nodes (3], and a database is
partitioned on these nodes. Further, transactions are exe-
cuted on the nodes storing the necessary data. Because of
this architecture, Shared-Nothing machines need to tune
their data-placements in order to provide load-balancing

and high performance of short-term transactions (8] [6] [5].

On the other hand, today’s OLTP applications must run
high volume of batch transactions as well. Usually, batch
transactions have file-scanning operations to read/write
large bulks of data, and are used for statistic data analy-
sis or periodic database-update. Shared-Nothing machines
thus need to run these batches on the data-placements
tuned for short-term transactions.

" In this case, previous studies showed the following two
design problems: The first problem is that, when tun-
ing data-placements for short-term transaction processing,
parallelism (i.e. intra-transaction parallelism) of a batch
is limited as a side effect. For instance, range-partitioning
strategy (7] and partial-declustering strategy [5] greatly im-
prove performance of short-term transactions [5] [8] [6]. In
these strategies, however, each file scanned by a batch is
not distributed uniformly on all nodes [8] {5]. This fact

CH2968-6/0000/0210$01.00 © 1991 IEEE

210

limits parallelism within a file-scanning operation.

As the second problem, today’s OLTP applications run a
much greater number of batches which update large bulks
of data. For example, periodic database-management often
issues a batch transaction like this: “updating all records
that match a given filtering-condition in a view relation”.
This batch has bulk-update operations as well as bulk-
read operations. Concurrency (i.e. inter-transaction paral-
lelism) between such batches is fairly limited because their
lock-requests to files are frequently blocked. The tradi-
tional two-phase locking protocol does not work well in
this case because of ‘chains of blocking’ [15], i.e., the dis-
advantage that transactions are blocked one after another.

Motivated by these problems, this paper discusses
concurrency-control scheduling of batch transactions on
Shared-Nothing database machines, where we concentrate
on batch transactions having bulk-update operations. Our
objective is to find the best schedulers for batch processing.
Due to the above design problems, schedulers for batches
need to perform well even when either concurrency or par-
allelism of batches :is' limited.

We test various schedulers, and examine - their absolute
performance and relative performance-gain either when in-
creasing parallelism by data-placements or when increasing
the degree of concurrency. By using the best-performing
schedulers for batch transactions, Shared-Nothing ma-
chines can tune their data-placements for short-term trans-
actions, and have no disadvantage to batch processing.
Therefore such the dedicated schedulers for batch process-
ing are new design alternatives.

Our previous study [13] already proposed two new sched-
ulers for batch processing. This paper examines these new
schedulers in addition to traditional locking protocols. This
will show that our new schedulers perform best even when
utilizing intra-transaction parallelism of batches.

A recent study [4] clarified performance effects of
concurrency-control and parallelism on short-term transac-
tion processing. However these effects on batch-transaction
processing are still unclear. Some works [9] [5] proposed to
tune data-placements for a given OLTP /batch workload,
while our approach is orthogonal to theirs.

The next section describes models of batch processing.
Section 3 introduces our new schedulers. After explaining
a simulation model in Section 4, Section 5 discusses exper-
imental results. Section 6 concludes this paper.

Network

—#(Control
New | Node
trans.
a file 2223

a declustered —|
file on 2 nodes

DPNO DPN1
DPN : Data-Processing Node
Figure 1: Shared-Nothing database machine model

2 Batch Processing Model

This section describes a model of a batch transaction. Fig.1
shows a model of a Shared-Nothing machine. This is com-
posed of “data-processing nodes”, which execute database
processing in parallel. A detailed model is described in
Section 4.1.

A batch is not a typical job like a debit-credit transac-
tion. Thus batches utilize no indices in many cases. When
executing any given selection-operation on a file, a batch
locks the whole file (or the whole partition) as any given
predicate-lock, and scans it. This observation gives the
following model of a batch transaction:

1: A batch transaction is a sequential execution of steps,
where each step reads or writes a file by file-scanning op-
erations. A file is used as a locking-granule. A reading (or
writing) step to a file must hold a shared(S) (or an exclu-
sive(X)) lock on it. Also a batch holds all its acquired
locks until its commitment. O

Here, a file represents either a partially-declustered re-
lation in ‘partial declustering’ strategy [5] or subrange’s
partition in a ‘range-partitioned’ relation (7]. Fig.1 shows
two files declustered on either one or two nodes. Intra-
transaction parallelism of a batch is obtained by scanning a
declustered file in parallel. Thus parallelism within a batch
increases by declustering a file on more nodes [5] [8]. In
this case, however, performance of short-term transactions
is degraded owing to CPU overhead of message passing.

2: A cost model of a batch transaction is given only
by its I/O demands: ie. each reading/writing step has
the cost of C. C is the number of objects to be accessed
sequentially by this step. An object is a unit of data for a
bulk-access operation, such as a cylinder of a disk. Only
a part of a file can be accessed if indices are used. Also
we assume that the updated data are flushed to disks soon
after write-ahead logging. Thus the I/O demand from the
commitment of a transaction to its completion is ignored.
u]

Ezample: Fig.2-(a) shows two batch transactions T't and
T2. Each batch has a sequence of three steps. Here,
“stepl — step2” represents a sequential execution of steps.
r;(P : C) (or wi(P : C)) means a reading (or writing) step
of T; to a file P, and the step has the cost of C. A commit-

211

(a) Sequences of two transactions T'1, T2:
T1: ri(A:1) — ri1(B:3) — wi(a:1).
T2: r2(C:1) — w2(A:1) — w2(C:1).
(b) WTPG where T'1 and T2 have just started.

Notation

o

TO : initial trans.

0
S !
/ § ’\ Tf :final trans.
T0 2ii5 7 | —% :precedence edge
i % : conflict edge
3N\?' 0 w_ _ edge of
weight w

T2

Figure 2: Examples of a WTPG

ment step comes at the last of each transaction’s sequence.
This commitment step is omitted in the rest of this paper.

3 New Schedulers for Batches

This section outlines our new schedulers {13] designed
for batch transaction processing. Apparently, batch-
transaction scheduling has high contention of both data
and resources !. These high contentions degrade perfor-
mance greatly {1] [15]. Thus our schedulers generate a se-
rializable schedule of batches so that these contentions are
reduced as much as possible.

As a general scheme, our schedulers work as follows:
First, the schedulers estimate the degree of the contentions
in a scheduling state, and next the lock-request q is granted
only if ¢ causes the smallest degree of the contentions.
For this estimation, our schedulers use a new tool called
a Weighted Transaction-Precedence Graph (WTPG) [13].
A WTPG represents not only a serializable order between
transactions but the [/O costs for executing them. The
following subsections describe two new schedulers using a
WTPG, each of which uses a different estimation strategy.

3.1 Weighted Transaction-Graph

This subsection introduces a WTPG [13]. Fig.2-(b) shows
a WTPG where the two transactions of Fig.2-(a) have just
started and have declared their sequences of Fig.2-(a). In
Fig.2-(a), TO (or T'f) is the initial (or the final) transaction
2] 2.

A WTPG is a variation of ‘transaction-precedence graph’
(or ‘serialization graph’ [2]), except that each edge has a
weight. A weight between two transactions represents the
1/0 cost to be used between commitments (or completions)
of these transactions. When a new transaction starts up, it

1Resource contention means congestion of resources, and data con-
tention means locking conflict [15].

270 is a virtual transaction which precedes all the transactions in
any serializable order. Tf is also a virtual one which is preceded by
all the transactions.

must declare both its sequence of steps and I/O demands of
each step. These ‘access-declarations’ with their I/O costs
are used to build up a new WTPG.

A WTPG represents a serializable order between trans-
actions as follows: In Fig.2-(b), a pair of shaded arrows,
{T1 — T2} and {T2 — T1}, is named a conflict-edge
(T1,T2). In general, (T, Tj) means that both Ti and Tj
have declared conflicting accesses to the same file. (e.g. in
this case, T'1 and T2 have declared exclusive accesses to
the file A). When it is determined that T’ precedes Tj in a
serializable order, (T'i 1T7) is replaced by a precedence-edge
{Ti — T}

Then each edge has the following weight:

1: Each edge from T to T has the weight of w. This
weight has the following meaning: “Suppose that Tj is
blocked by T'i and that T’ has Jjust now committed. Then,
from now, Tj must access w objects before its commit-
ment.”. e.g. In Fig.2-(b), {T1 — T2} has the weight of 2.
That is, T2 is blocked by T'1 at its second step, w2(A:1).
Thus T2 has the remaining cost of 2 objects (i.e. the cost
of both w2(A:1) and w2(c: 1)) before its commitment. O

Weights on edges of either T0 or Tf
special meanings:

2: A weight w on {T0 — Ti} means “At the current
scheduling-state, T’ must access the remaining I/O cost
of w objects before its commitment”. e.g. In Fig.2-(b),
{T0 — T'1} has the weight of 5 because T'1 has Jjust started
up. O

3: A weight on {T'i — T'f} represents the 1/0 cost to be
paid between T'i’s commitment and its completion. From
the cost model in Section 2, this is set to 0 for all T. Tf
and its edges are not depicted in the rest of the paper. O

When a schedule proceeds, only the weights of T0’s edges

are adjusted [13]. The other kinds of weights are kept con-
stant.

have the following

3.2 Scheduler using global optimization

Here we outline the Globally-Optimized WTPG scheduler
[13] (GOW 3). GOW uses a global optimization strategy to
estimate the degree of the contentions, as follows: Let W
be a full serializable order of the output schedule. Then W
should make the shortest critical path in the WTPG of the
current state.

(Inagiven WTPG, a serialzable order is called ' full* when

it replaces all conflict-edges by precedence-edges. The

critical path is the longest path from T0 to TH

Ezample: Suppose Fig.3-(a) shows a WTPG at the cur-
rent scheduling-state. In this WTPG, a full serializable or-
der, W={T1 -T2, T3 T2}, replaces all the conflict-
edges by precedence-edges. W modifies Fig.3-(a) into
Fig.3-(b), and makes the critical path {T0 - T1 - 12}
there. This critical path is shorter than that made by any
other full serializable order in Fig.3-(a). Thus the serializ-
able order of the output schedule should be W. a

3This was called the Chain-WTPG scheduler in [13].

T T1 T1
5 ‘y 5 5 1
2 1415 / ‘1 ‘
) 2
T0__p T2 T0 —p T2 TO_Zp 72
4i42 2 4: 40
T3 T3 T3
(a): WTPG of the (b):WTPG of the (c): After granting
current state shortest critical path T1's lock-req.

(LengthofpathP = ¥ (weights of edges in P))
Figure 3: WTPG's in Globally-Optimized WTPG scheduler

INPUT: a lock-request ¢ on a locking-granule d.
OUTPUT: granting, blocking, delaying, or aborting gq.

Algorithm GOW(q)

Phase0: If ¢ is the start step of a new transaction T,
GOW() examines whether the WTPG of the current state
keeps a ‘chain-form’ by starting T. If this examination
fails, then g is aborted and GOW() returns. Otherwise,
append T to the WTPG.

Phasel: If ¢ conflicts with the
blocked and GOW() returns.

Phase2: Compute a full serializable order W, where W
makes the shortest critical path in the WTPG of the cur-
rent state.

current lock held on d, ¢ is

Phase3: If a serializable order which is inconsistent with
W is generated by granting ¢, then ¢ is delayed and
GOW() returns. Otherwise ¢ is granted.

Phase4: Find a conflict-edge, (T4%, T5),
determined that T precedes
then replace it by {Ti — T}j}

where it is newly
Tj. If such the edge exists,
» and GOW() returns.

212

Figure 4: Globally-Optimized WTPG scheduler

Apparently, a chain of blocking such as {T1 — T2 —
T3} makes a long critical path in Fig.3-(a). Also high con-
tention of resources keeps large weights on {T0 — T4}.
Thus the scheduling strategy of GOW reduces the con-
tentions in the output schedule as far as GOW can predict.

Fig.4 shows the scheduling algorithm of GOW when a
lock-request is submitted. In Fig.4, the Phase? finds the
globally-optimized serializable order W, and then W is en-
forced to the output schedule at the Phase 9. Aborted or
delayed lock-requests are submitted to GOW after some
delay.

It is NP-hard to find the above serializable order, W,
in any given WTPG. The Phased of Fig.4 thus restricts
a WTPG into a ‘chain-form’, where W is computed by
O((Number of Nodes)?) in any given chain-form WTPG
{13]. A “chain-form WTPG” means that each general
transaction conflicts only with its adjacent nodes in the
WTPG. e.g. WTPGs of Fig.3 are chain-forms.

Ezample: Fig.3-(a) shows the WTPG of the current

INPUT: a lock-request g.
Function £(q)

Phasel: Let W0 be the WTPG of the current state. Then
make the WTPG, W1, where ¢ has been just granted in
WO0. Here, by granting ¢ in WO, the serializable order
between T'i and T'j may be determined. If so, replace such
conflict-edge (T'%, Tj) by the precedence-edge {Ti — T'j}.
If ¢ causes a deadlock, then return £(g) = oo.

Phase?: Ignore all the remaining conflict-edges in W1.
Then £(q) is set to the length of the critical path from
T0 to Tf in this WTPG.

Figure 5: Function £(q)

scheduling-state. W = {T'1 — T2, T3 — T2} makes the
shortest critical path in this WTPG. Then GOW works as
follows: In Fig.3-(a), suppose that T'1 requests a lock which
conflicts with T2. If this lock is granted, then (T'1,T?2) is
replaced by {T'1 — T'2}. This is consistent with W. Thus
this lock is granted to T'1 and then the current WTPG is
modified into that of Fig.3-(c). On the other hand, if T2
requests a lock conflicting with T'1 in Fig.3-(a), then this
makes the inconsistent precedence-order, { T2 — T1 },
against W. Therefore the request of T2 is not granted but
is delayed. O

3.3 Scheduler using local optimization

The ‘chain-form’ constraint of GOW fairly limits the num-
ber of running transactions when batches update a small
part of database (i.e. ‘hot’ files such as master files). Be-
cause of this problem, we also proposed another scheduler
using a less strict optimization strategy [13]. This sub-
section describes this Locally-Optimized WTPG scheduler
(LOW) 4.

The scheduling strategy of LOW is as follows: LOW
grants a lock-request, q, only when q causes the smallest
degree of the contentions in the current scheduling-siate.
This strategy does not predict how much contentions may
occur in the future scheduling-state. Based on this strat-
egy, when a lock-request g is submitted, LOW computes
the function £(q) shown in Fig.5. £(g) estimates how much
degree of contentions have been caused when granting ¢ in
the current state.

Ezample: Fig.6 illustrates the procedure of £(q). For
simplicity, the weight on {T'0 — T'i} is set to 0 for all T%.
T0 with its edges is not displayed in this figure. Fig.6-(a)
shows a WTPG of the current state. In Fig.6-(a), sup-
pose that T'5 issues a lock-request, ¢, which conflicts with
T6. Then Fig.6-(b) shows the WI'PG where £(g) is com-
puted. Fig.6-(b) is made from Fig.6-(a) as follows: First,
q gets granted in Fig.6-(a), and then (T'5,T6) is replaced
by {T'5 — T6}. Then the path {T4 — T5 — T6 — T7}
is generated. Thus (T'4,T7) in Fig.6-(a) is replaced by

4This was called the K-conflict WTPG scheduler in [13].

T4 (c) Ta
1 1
’/ 10 »/
i T5 T5
' :” 1 L
: 1 1t 1

4 (b)

(a) T
10, 1
T5

$
'

e

1141
(&
T6 —1>T7 Te—» 17 T6— T7
(d) T4 Length of path P
y .4 = Y (weights of edges in P)
1 0 1 ((a): WTPG of the current state.
15 LY (b): when computing E(q) of T5.
T1 ;, (c): when computing E(p) of T6.
1 74 (d): after granting a lock-req. of T6.
T6 —»T7

Figure 6: WTPG’s in Locally-Optimized WTPG scheduler

INPUT: alock-request ¢ on a locking-granule d.
OUTPUT: granting ¢, or delaying g, or blocking g.

Algorithm LOW(¢)

Phasel: If ¢ conflicts with the current lock held on d, gq is
blocked and LOW() returns.

Phase?2: Compute £(q). If ¢ causes a deadlock, ¢ is delayed
and LOW() returns.

Phase3: If £(¢q) < E(p) for all p € C(q), then q is granted.
(C(q) is a set of access-declarations which conflict with ¢
on d.) Otherwise ¢ is delayed and LOW() returns.

Phaseq: Find a conflict-edge (7%, Tj) where it is newly
determined that T precedes T'j. If such the edge exists,
then replace it by {T'i — T'j}, and then LOW() returns.

Figure 7: Locally-Optimized WTPG scheduler

{T4 — T7}. Then, in Fig.6-(b), the critical path is
{T4 — T7} of length 10. Hence £(q) = 10. O

Fig.7 shows the algorithm of LOW when a lock-request
¢ is submitted. £(q) is computed at its Phase2. At the
Phase3, LOW grants ¢ only when £(g) < &(p) for all p,
where p is any access-declaration conflicting with ¢. If
&(q) > &(p) for some p, then LOW judges that the lock
requested by ¢ should be granted primarily to the transac-
tion declaring p.

Ezample: Suppose that T5 issues a lock-request ¢ in
Fig.6-(a), where ¢ conflicts with T'6’s access-declaration,
p. LOW then computes £(g) and £(p). Fig.6-(c) shows the
WTPG where £(p) is computed. Here the conflict-edge,
(T4,T7) in Fig.6-(a), has been ignored by Phase2 of £(p).
Thus £(p) = 1. Because £(g) = 10 > £(p) = 1, LOW
delays gq. On the other hand, if T'6 issues the lock-request
p in Fig.6-(a), then p is granted and thereafter the WITPG
is modified into that of Fig.6-(d). O

At the Phase3 of Fig.7, we limit the size of C(q) to a
constant, K (=0,1,2,...). LOW of K =i is computed by

213

Table 1: Simulation Parameters

Parameter | Meaning Value
NumNodes | Number of Data-Processing Nodes 8
NumFiles | Number of Files 8 to 64
DD Degree of Declustering 1,2,4,8
mpl multi programming level infinite
A transaction arrival rate (TPS) 0tol4
CPUspeed | CPU speed of Control Node 4 MIPS
netdelay network delay time 0 ms
msgtime message send /receive CPUtime 2 ms
sol_time CPUtime of transaction startup 2 ms
cot_time CPUtime of commitment 7 ms
ddtime CPUtime of deadlock detection 1 ms

in C2PL
kwipgtime | CPUtime of computing £(g) in LOW | 10 ms
chaintime | CPUtime of computing the 30ms

’ optimized serializable order in GOW

toptime CPUtime of chain-form test 5 ms
ObjTime 1 object processing time at 1000 ms

a Data-Processing Node at DD = 1

O((Number of Nodes)’) [13]. LOW starts up a new trans-
action only when this limited size of C(q) is not violated.
Even at K =1, LOW allows a non chain-form WTPG.

4 Simulation model

4.1 Machine model

Here we describe a simulation model of a Shared-Nothing
machine of Fig.1. The model in Fig.1 has one control node
and NumNodes nodes for database processing. Table 1
lists its parameters with their values.

1. Data Placement: NumFiles is the number of files,
where each step of a batch scans a file, as described in Sec-
tion 2. A file, fileID, is placed at its home node, where
its nodeID = (fileID mod NumNodes). DD is called the
degree of declustering: i.e. When a file is declustered on
DD nodes, it is split into DD partitions and they are lo-
cated at DD nodes (from its home node to the node of
((home_nodeID + DD — 1) mod NumNodes)).

2. Control Node (CN): CN has a lock table of file-level
locking granules. CN grants or blocks or delays a lock-
request to a file. The model of CN is set to a CPUspeed
MIPS processor. A new transaction T arrives at CN in the
exponential distribution of arrival rate A. At CN, the num-
ber of active transactions is controlled to be less than multi-
programming level, mpl. When T' commits (or starts), CN
spends coi_time (or sol.time) as a coordinator of two-phase
commitment.

3. Data-Processing Node (DPN): The model of a DPN is
given by ObjTime. ObjTime is the time used for processing
1 object at a DPN. This simple model is justified because a
bulk-access operation is implemented by pipeline between
processors and disks, and because its cost is in I/O0-bound
region when most of accessed data is filtered out. Control

214

overheads such as initiating a cohort is ignored at DPN’s
because they are far smaller than ObjTime.

4. Execution model: A batch transaction T is executed
as follows: First, when a step of T accesses a file declustered
on DD nodes, CN sends T to its home node. Next T is split
into DD cohorts and then they are sent to the appropriate
nodes. Thereafter a DPN executes cohorts in a round-robin
manner. When DD = k, the unit of the round-robin service
is to scan the data of size 1/k object. When a cohort of
T’s step ends on a DPN, it returns to its home node. After
all the cohorts of a step have returned to its home node, T'
returns to CN. Thereafter T' requests its next step.

4.2 Parameter setting

Here we explain the parameter setting listed in Tablel.

Concurrency-control parameters ddtime, chaintime, and
kwlpgtime are set up from instruction counts of our simu-
lator.

ObjTime of 1 second corresponds to a DPN model of
a 4 MIPS processor per disk of 2.5 MB/second transfer
rate. One object corresponds to sequential scan of 2.5 mega
byte. From our experiences on Functional Disk System-R
[10], this model can execute a join-operation in I/O-bound
manner if 80% data of source relations are filetered out
before the join. ObjTime is much larger in practical cases.
Therefore this setting overestimates control overhead.

NumMNodes is set to 8. The values of NumFiles in Table 1
are far smaller than those of previous studies about short-
term transactions [4] [1] [3]. This is because a database
has tens of relations, while it has millions of record-level
locking granules.

In each experiment, a new transaction is given its se-
quence of steps by “Pattern: step! — ... — stepN”. Steps
are expressed as described in Section 2. Each new trans-
action is an instance of this pattern. In each pattern, the
I/0 cost of each step shows the cost in the case of DD = 1.
When DD = k, k cohorts execute a step of cost C in paral-
lel. Thus this step declares the cost of C/k when DD = k.

We use the following three performance metrics: mean
response time, RT (the time from arrival of a transaction to
its completion), throughput (Number of completed Trans-
actions Per Second, TPS), and response-time speedup at a
fixed arrival rate. The response-time speedup of any given
scheduler, S, is given by (RT of S at DD = k)/(RT of
S at DD = 1). This represents relative performance gain
of each scheduler when it utilizes intra-transaction paral-
lelism. At each measured point of a fixed arrival rate, the
simulation ran during 2,000,000 clocks (1 clock = 1 milli-
second) with mpl = infinity.

We examine the following six schedulers: GOW, LOW
of K =2 (LOW), Atomic Static Locking (or ‘conservative
two-phase locking’ in [2]) (ASL) {15], Cautious Two-Phase
Locking (C2PL) [12], Optimistic Locking (OPT) [11], and
NO Data Contention (NODC). NODC grants any lock at
any time so that it shows upper bound of performance.
C2PL is a variation of strict two-phase locking [12], and

L

80

oPT L cepL ﬁf
]

607 ?\ Low
i

P AsL
¥

Response Time (sec.)

40 - 1{ I f // NODC
20 1 51, ¥
‘.‘"m. a/“
0 T T T L} T
0.1 0.3 0.5 0.7 0.9 11
Arrival Rate (#trans./sec.)
Figure 8: Exp.l: Arrival Rate vs. Resp. Time.

(DD =1, NumFiles = 16)

has a WTPG (without weights) for predicting deadlock.
C2PL grants a lock-request ¢ if and only if ¢ is not blocked
and does not cause a deadlock. ASL is the two-phase lock-
ing where a transaction has to get all the necessary locks at
its start. OPT certifies serializability when a transaction
commits, and then a transaction is aborted if this certifica-
tion fails. The schedulers except OPT do not have either
deadlock or rollback.

5 Experiments and Results

This section shows and discusses experimental results.
Batch transactions have no fixed form of operations, so
their workloads are unfixed. Thus we examine the follow-
ing two cases distinctly:

(1): the case when batch
quently blocked.

(2): the case when batch transactions update a hot set.

transactions are fre-

If a scheduler keeps high performance in the above two
cases, it can keep stable and high performance in any given
workload of batch transactions.

5.1 Performance effect on blocking

First, we examine the case where transactions are fre-
quently blocked. This examination shows how well the
schedulers avoid chains of blocking when parallelism in-
creases. The following experiment is used throughout this
subsection:
Experiment1:

Patternt: r(F1:1)— r(F2:5) — w(F1:0.2) — w(F2:1).
NumPFiles = 16 (in default), DD = 1, 2, 4, or 8. The two
files, F1 and F2, are randomly chosen among NumFiles
files. X-locks are requested at the first two steps. These
steps cause chains of blocking. O

5.1.1 Characteristic of batch processing

215

Table 2: Exp.1: Number of Files (#files) vs. Throughput
(TPS) at Resp.Time = 70 sec., DD=1.

#files [NODC | ASL | GOW | LOW | C2PL | OPT
8 1.02 | 0.45 0.44 0.44 0.25 | 0.16

16 1.04 | 0.72 0.67 0.65 035 0.24

32 1.04 0.9 0.86 0.83 0.5 0.3

64 1.04 | 0.96 0.95 0.94 0.62 | 0.38

First of all, we describe characteristics of batch-transaction
processing in comparison with short-term transaction pro-
cessing.

Fig.8 shows response time, RT', as a function of arrival
rate in Experiment 1, where DD = 1 and NumFiles = 16.
In this figure, let Ag be the arrival rate where any given
scheduler, S, has RT'=70 seconds. Then, without locking
conflict, resources are saturated at Ayopc = 1.04 TPS. 5.
The ratio of As/Anopc shows the ratio of useful resource-
utilization © in the case of using the scheduler S. Then this
figure shows the following characteristic:

#1: When batch transactions have bulk-update opera-
tions, high data-contention degrades performance at much
smaller arrival rate than resource congestion does. e.g. In
Fig.8, for all scheduler S, As/Anopc is less than 70 %. O

This characteristic shows that inter-transaction paral-
lelism of batches is limited. Thus parallel execution within
a batch is necessary to have high ratio of useful resource-
utilization.

In contrast, short-term transaction processing has ex-
tremely low data-contention, which causes thrashing near
or over the load of resource saturation. In this case, thus,
locking protocols make small difference of performance by
reducing overhead such as message passing or rollback.

5.1.2 Effect of concurrency control

Next we examine how the schedulers perform by using only
concurrency-control of batches. Table.2 shows throughputs
in Experiment1 where each scheduler has the response time
of 70 seconds at DD = 1 and NumFiles = 8, 16, 32, or 64.
Here, when NumF'iles varies, the ratio with which trans-
actions are blocked varies drastically. This drastic change
is due to unfixed workloads of batch processing, thus sched-
ulers need to benefit from such the limited concurrency.
As for absolute performance in Table.2, ASL, GOW and
LOW have almost the same performance. All of them have
1.6 to 2.0 times higher performance than C2PL and OPT.
Therefore we can see that GOW and LOW avoid chains of
blocking as perfectly as ASL does. In contrast C2PL has
poor performance owing to chains of blocking. OPT also

5We observed that at Axyopc, resource utilization ratio of NODC
is about 95%.

6Resources are used usefully if a transaction using them is not
aborted.

1.2 *
; B
'F/ / B o

-~ 1.0
g o —o-
X Low Qe
2 089 g
© e
g N
g 0.6 1 GOW o —
a 4
3 0.4 7 /‘
(=] . o
£ e

0. 2 L] T v T T

0 2 4 6 8
Degree of Declustering

Figure9: Exp.1: Declustering vs. Thruput.
(at Resp.Time=70sec., NumFiles=16)

Table 3: Exp.1: Declustering vs. Resp. Time (seconds).
(NumPFiles = 16, A = 1.2 TPS)

DD | NODC | ASL T GOW | LOW | C2PL+M | OPT
-1 141 | 387 429 430 669 | 783
2 103 | 183 233 245 479 | 555
4 74 83 102 107 250 | 494
8 58 48 47 47 50 | 490

has poor performance because high data-contention causes
high ratio of roliback.

In terms of relative performance gain in Table.2, ASL,
LOW, and GOW have high gain of throughput (of about
0.45 TPS) from NumFiles=8 to 32, while C2PL and OPT
have poor gain (of less than 0.25 TPS).

ASL, LOW and GOW avoid chains of blocking and have
no rollback of transactions. Because of this property, these
three schedulers have much better absolute/relative perfor-
mance through concurrency control than C2PL and OPT.

5.1.3 Effect of parallel execution

Next we examine performance effect of parallel execution
in the case of blocking. Experimentl is used here, where
NumFiles=16 and parallelism of a batch increases from
DD =1 to 8.

Fig.9 shows throughputs where each scheduler has the
response time of RT = 70 seconds. Table.3 shows response
time of each scheduler at A\, = 1.2 TPS, where DD = 1
to 8. Also Fig.10 shows response-time speedup at A\; as a
function of DD.

At the load of A}, NODC has the speedup of 2 at DD=8
in Fig.10. This shows that resources are fairly saturated at
Ay if there is no data contention. Further we can see that
parallel execution does not have great speedup at A if there
is no locking conflict. Therefore response-time speedup at
A1 shows how well each scheduler utilizes intra-transaction

10 1
ASL = 8-
GOwW S
Low e
NODC 0 g
C2PL @
OPT E
C2PL+M ® 4
(7]
c
[«]
&
e 2?7
o ¥ L) T T
0 2 4 6 8

Degree of Declustering
Figure10: Experiment 1:

Declustering vs. Resp.Time SpeedUp.
(NumFiles=16, Arrival Rate = 1.2tps)

parallelism by its unique concurrency-control facility.
From Fig.9 and Table.3, the following observation of #1
hold about absolute performance:

#1: ASL, GOW and LOW keep much higher perfor-
mance than C2PL and OPT when parallelism increases to
a limited degree. e.g. At DD= 2 in Fig.9, ASL, LOW
and GOW have high ratio of useful resource-utilization (of
about 85 %), and their throughputs are 1.5 times higher
than that of C2PL. Also at DD = 2to 4 in Table.3, ASL,
LOW and GOW have 2 to 2.5 times shorter response time
than C2PL+M 7 and OPT do. O

This observation of #1 shows that parallel execution
of batch transactions has greater performance-effect than
their concurrency-control.

Next we discuss relative performance gain through par-
allelism. We can see the following observation in Fig.10:

#2: OPT has the smallest speedup of 1.5 at DD =
4, which is smaller than NODC’s speedup of 2. Also
C2PL{+4M) has better speedup than OPT and NODC. O

This observation of #2 also holds in the case of short-
term transaction processing. A recent study [4] explained
this as follows: OPT saturates resources greatly by restart-
ing transactions. Therefore OPT has much heavier load
than NODC does. As a result, effective parallel execution
of cohorts is very limited in OPT. In contrast, C2PL has
no restart and blocks transactions. Thus C2PL executes
cohorts effectively in parallel because C2PL makes its load
much lighter than NODC does.

On the other hand, the following observations, #3 and
#4, are unique to batch transaction processing. Both of
them do not hold in the case of short-term transaction pro-
cessing:

TC2PL+M is the best C2PL to control multi-programming level
in order to avoid chains of blocking. C2PL+4M has better response
time than C2PL, but they have the same peak-throughput.

216

1600

s P

$ 1007

o

w

Q

E

-

g 107

c

o

Q

7]

[+3]

oc
1 T T v
0.0 0.5 1.0

Arrival haie (#trans/séc.)

Figure 11: Arrival Rate vs. Time Speedup
(Exp.1. NumFiles=16, DD=4)

#3: When the load is heavy, C2PL cannot obtain great
speedup of response time from the limited parallelism. This
is due to high data-contention of batch processing. e.g. At
DD=4 in Fig.10, C2PL has the low speedup of 2.5 (in the
case of C2PL+M), while ASL, LOW and GOW have the
high speedup of 4 to 5. O

This observation of #3 is explained as follows: Par-
allelism makes the waiting time of blocked transactions
much shorter, but high data-contention still raises chains
of blocking at the heavy load of Ay. From this fact, C2PL
still has the poor response time although the blocking light-
ens the effective load at A;. Thus C2PL has much smaller
speedup than ASL does.

#4: Even when the load is heavy, ASL, LOW and GOW
. can obtain rich gain of performance from the limited par-
allelism. e.g. In Fig.10, these three schedulers have the
linear speedup of response time at DD = 1 to 8. Partic-
ularly they have high speedup even at the low degree of
parallelism of DD < 4. Their speedup is the best among
the six schedulers. O

This observation of #4 is explained as follows: Because
of high data-contention, there are only a small number of
transactions which can start without locking conflict. ASL
starts only such the transactions without rollback. Con-
sequently its load is made much lighter at A; than that
of NODC. Also ASL has no chains of blocking. Thus it
executes much more transactions concurrently than C2PL
does. Therefore ASL executes more cohorts effectively in
parallel at lighter load than C2PL does. It follows that
ASL has the linear speedup even at the heavy load of A;.
GOW and LOW avoid chains of blocking as successfully as
ASL. Thus they also have linear speedup of response time
through the limited degree of parallelism.

We also examined response-time speedup of the sched-
ulers at various loads. There we observed that, when DD
=1 to 4, the above observations from #2 to #4 hold at

217

12 1 ASL
AL o .]
GOw §1°‘_
ow §]
NoDc &
> 7
C2PL E 6
OPT =
-
o
(72
€ 2]
0 T T T T
0 2 4 6 8

Degree of Declustering

Figure12: Experiment 2:
Declustering vs. Resp.Time SpeedUp.
(at Arrival Rate = 1.2 tps)

heavy loads. Here, the throughputs of C2PL in Fig.9 show
the boundary between heavy loads and light loads. At
each DD, any load over the throughput of C2PL is the
heavy-load region. e.g. In Fig.11, we show this speedup
when DD = 4 as a function of A\. At DD = 4, C2PL has
the throughput of 0.85 TPS as shown in Fig.9. Thus, in
Fig.11, the observations about relative performance gain
hold at the heavy loads of A > 0.85 TPS. 8.

The above observations, #3 and #4, show that blocking
also limits performance benefit of parallelism. ASL, GOW
and LOW reduce both blocking and resource saturation.
Thus they obtain high absolute/relative performance from
the limited parallelism.

5.2 Effect of parallelism on hot set

Here we examine performance effect of parallel execution
in the case when batches update a hot set. The following
experiment is used here.

Experiment2:
Pattern?: r(B:5) — w(F1:1) — w(F2:1). The file B is
chosen randomly among 8 ‘read-only’ files. F1 and F2 are
chosen randomly among the other 8 ‘hot’ files. Every file
is declustered on 1 to 8 nodes. Fach node is set to a home
node for both one ‘read-only’ file and one ‘hot’ file. The
read/write steps in this pattern request S/X-locks respec-
tively. O

Table.4 shows throughputs where DD = 1, 2, or 4 and
each scheduler has the response time of RT' = 70 seconds.
This table also shows response time at A = 1.2 TPS. Ab-
solute performance at DD = 1 in this table shows effect of
concurrency control on the schedulers in Experiment2. As

8At very light loads, every scheduler has almost the same
response-time (of about 4 seconds when DD = 4). Thus C2PL
and OPT have greater speedup at such light loads than the
others, as shown in Fig.11. This shows that C2PL and OPT
need richer parallelism in order to compete with the others.

Table 4: Exp.2: Throughput (TPS) and Response Time
(seconds at A = 1.2 tps) at DD=1, 2, 4.

[NODC | ASL | GOW [LOW [C2PL | OPT
Thruput

DD =1 111 04 057 077 0.7 0.38

20 111] 07| o088 101 092] 055

4] 113 1.03 11] 112 1.09] 085

Resp.Time)

DD=1 1121 611 500 | 321| 432 751

2 97) 380 | 252 | 133| 242 | 746

4 87| 116 80 57| 118 457

discussed in our previous study [13], LOW is the best in
Table.4, followed by C2PL, followed by GOW, and ASL is
the worst except OPT. This gap of absolute performance
is straightly due to how many transactions can start in
each scheduler. Although C2PL starts the greatest num-
ber of transactions, its performance is degraded by chains
of blocking on a hot set.

As for relative performance gain through parallelism,
Fig.12 shows the speedup of response time at A = 1.2 TPS
as a function of DD. (The arrival rate of 1.2 TPS makes
a very heavy load because NODC has the low speedup of
157 at DD = 8.) The following observation is obtained
from this figure:

#1: ASL has worse response-time than C2PL. However
ASL has better speedup of response time than C2PL and
OPT. This is because chains of blocking on a hot set limit
performance gain of C2PL. On the other hand, LOW and
GOW have the best speedup as ASL does. In particular,
LOW has the best throughput and the best speedup by
parallel execution. O

From this observation, we can see that if no blocking
occurs, relative performance gain is independent of data
contention on a hot set.

In summary of Section 5.1 and 5.2, GOW and LOW
utilize the limited concurrency and the limited paral-
lelism ‘most effectively. Both of them have the best ab-
solute/relative performance. Particularly when updating
‘hot’ files, LOW is better than GOW. ASL is the best
among the traditional locking protocols. However, when
a workload has ‘hot’ files to be updated, ASL has poor and
unstable performance if parallelism is limited.

5.3 Effect of parallelism on sensitivity

Although GOW and LOW perform well in the above exper-
iments, they depend on how correctly transactions declare
their 1/0 demands. This subsection examines this ‘sensi-
tivity’ when increasing parallelism. We use the following
experiment:

218

e e S S ¥ — GOW, DD=4
O Qe O v, o‘\o
LOW, DD=4

m-ﬁ'%;te:ﬁm-..ﬂ ,,,,, A GOW, DD=2
S

8
2
2
g 08 =
= T"® LOW, DD=2
5 07
Q. ey "“”*--—-q.....,.,,...__.....l et GOW, DD=1
§» 0.6 - » DD~
<} ..., ' T
£ 05
= LOW, DD=1
0.4 Ll T Mg §
102 05 1 2 5 10

Standard Deviation of Error Ratio

Figure 13: Exp.3: Error Ratio vs. Throughput. (DD =1
to 4, NumFiles=16, Resp.Time = 70 sec.)

Experiment3: Pattern! of Experiment 1, with
NumFiles=16 and DD =1, 2, 4, or 8. I/O demand of each
step is estimated at C by the formula: C = Co x (1+2),
where Cp is the exact I]O demand of the step, and z is
an error ratio. z is given by the normal distribution where
its mean = 0 and its standard deviation, o. (C = 0 when
z<-1). O

At greater ¢, GOW and LOW estimate the degree of
data/resource-contentions incorrectly, and then their per-
formance is degraded by chains of blocking.

Fig.13 displays throughput at RT=70 seconds as a func-
tion of &, where parallelism increases from DD =1 to 4.
Also Table.5 shows degradation ratio of throughput as a
function of DD. This degradation ratio of a scheduler is
set to (its throughput at o = 10)/(its throughput at o = 0)
in Fig.13. Further C2PL cannot avoid chains of blocking
at all. Thus the throughputs of C2PL shown in Fig.9 are
the lower-bound performance of both GOW and LOW.

From Fig.13, the following observations hold in the case
when no parallelism is utilized:

#1: GOW and LOW avoid chains of blocking even when
very incorrect 1/O demands are declared. eg., Ato =1
and DD= 1 to 2 in Fig.13, GOW and LOW keep 1.45 to
1.7 times higher throughput than C2PL does. O

#2: LOW is more sensitive to incorrect I/O demands
than GOW, as shown in Table.5. GOW is insensitive be-
cause of its chain-form constraint [13]. O

When increasing parallelism from DD = 1 to 4in Fig.13,
the following observations hold:

#3: When parallelism increases, GOW and LOW get
more insensitive to the error ratio. eg. At DD=1to4in
Table.5, LOW and GOW have less degradation of through-
put when increasing DD. This is because less chains of
blocking occur by increasing parallelism. This reason can
be seen because C2PL has higher performance at higher
DD in Fig9. O

#4: Even when increasing parallelism at high error-ratio,
GOW and LOW still outperform C2PL greatly. e.g. At
DD = 4 with o = 1 in Fig.13, GOW and LOW have 1.23

o ——

Table 5: Experiment 3: Sensitivity Test
Degradation Ratio = (TPS at o = 10)/(TPS at o = 0)

DD=1 | DD=2 | DD=4
GOW 94% 96% | 97.5%
LOW 77% 84% 93%

times higher throughputs (of about 1.05 TPS) than C2PL
does (0.85 TPS). Thus GOW or LOW should be used in-
stead of C2PL when parallelism increases. O

In Table.5-(a), throughput of LOW is improved greatly
by increasing DD. Therefore, considering performance in
the case of updating a hot set, LOW is better than GOW
if parallelism is utilized.

6 Conclusion

This paper has discussed batch-transaction processing on
Shared-Nothing database machines, and has examined how
well its performance is improved by using both concurrency
control and parallel execution. The best-performing sched-
uler for batches is a new alternative so that these machines
freely tune their data-placements for short-term transac-
tions. We have examined cautious two-phase locking [12]
(C2PL), atomic static locking (ASL) [15], optimistic lock-
ing (OPT) [11], and two new schedulers proposed in our
previous study[13]: the Globally-Optimized WTPG sched-
uler (GOW) and the Locally-Optimized WTPG scheduler
(LOW).

Simulation results have clarified the following require-

ments for utilizing the limited concurrency:

(1) avoiding chains of blocking,

(2) running many transactions when updating a hot set,
(3) making no rollback of transactions.

In order to obtain high gain of performance through par-
allel execution, the requirements of both (1) and (3) are
necessary, but the requirement of (2) are not. Only LOW
satisfies these three requirements. GOW has both of (1)
and (3), and partially satisfies the requirement of (2). In
contrast, C2PL, ASL, and OPT lack the requirements of
(1), (2), and (3), respectively.

Comparing absolute performance between the sched-
ulers, when parallelism is fairly limited (i.e. declustering a
file on one or two nodes among 8 nodes), LOW and GOW
keep 1.5 to 2.0 times higher throughput than the others.
Particularly when updating a hot set like master files, LOW
is much better than GOW. Among the traditional locking
protocols, ASL is better than C2PL and OPT. However
ASL has poor and unstable performance when parallelism
is limited and a workload has hot files to be updated.

As for relative performance gain, we examined the case
of increasing parallelism through partitioning data. There
ASL, LOW and GOW have the best speedup of response
time even at heavy loads. In contrast, C2PL and OPT

219

have poor speedup at such heavy loads because of high
data-contention and because of high resource-contention,
respectively. Particularly, high data-contention limits rel-
ative performance gain of C2PL. This is contrast to the
relatively-high gain of C2PL in the case of short-term trans-
action processing.

In summary, GOW and LOW utilize both concurrency-
control and parallel execution of batches most effectively.
Therefore, by using these dedicated schedulers for batch
transactions, a Shared-Nothing machine can freely tune
its data-placements for short-term transactions and has no
great disadvantage to batch processing. As a further work,
it would be interesting to improve these new schedulers for
resource-level load-balancing on Shared-Nothing database
machines.

References

{1} Agrawal,R. et al. Models for Studying Concurrency Con-
trol Performance: Alternatives and Implications. In Proc.
ACM-SIGMOD ’85, pages 108-121, 1985.

Bernstein,P.A. et al. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

Bhide,A. An Analysis of Three Transaction Processing
Architectures. In Proc. 14th Int’l Conf. Very Large Data
Bases, pages 339-350, 1988.

Carey,M.J. et al. Parallelism and Concurrency Control

BT BRIRFAD W imated, BRiphpspofpchines: In Proe.

Copeland,G. et al. Data Placement in Bubba. In Proc.
ACM-SIGMOD 88, pages 99-108, 1988.

DeWitt,D.J. et al. A Single User Performance Evaluation
of the Teradata Database Machine. Technical Report DB-
081-87, MCC, 1987.

DeWitt,D.J. et al. Gamma - High Performance Dataflow
Database Machine. In Proc. 12th Int’l Conf. Very Large
Data Bases, pages 228-237, 1986.

Ghandeharizadeh,S. et al. A Multiuser Performance Anal-
ysis of Alternative Declustering Strategies. In JEEE Proc.
6th Int’l Conf. Data Engineering, pages 466-475, 1990.

Ghandeharizadeh,S. et al. Hybrid-Range Partitioning
Strategy: A New Declustering Strategy for Multiprocessor

Database Machines. In Proc. 16th Int’l Conf. Very Large
Data Bases, pages 481-492, 1990.

Kitsuregawa,M et al. Query Execution for Large Relations
on Functional Disk System. In IEEE Proc. 5th Int’l Conf.
Data Engineering, 1989.

(2]
3]

[4]

5]
6]

(7]

[8

—

[10]

Kung,H. et al. On Optimistic Methods for Concurrency
Control. ACM Trans. Database Syst., 6(2):213-226, 1981.

Nishio,S. et al. Performance Evaluation on Several Cau-
tious Schedulers for Database Concurrency Control. In
Proc. 5th Int’l Workshop Database Machines, pages 212-
225, 1987.

Ohmori,T. et al. Concurrency Control of Bulk Access
Transactions on Shared Nothing Parallel Database Ma-
chines. In IEEE Proc. 6th Int'l Conf. Data Engineering,
pages 476-485, 1990.

Tandem Performance Group. A Benchmark of NonStop
SQL on the Debit Credit Transaction. In Proc. ACM-
SIGMOD ’88, pages 337-341, 1988.

Tay,Y.C. Locking Performance in Centralized Databases.
ACM Trans. Database Syst., 10(4):415-462, 1985.

[11]
[12]

(3]

[14]

(15)

