
Navigational Integration of Autonomous Web Information Sources
by Mobile Users

Wisut Sae-Tung Tadashi OHMORI Mamoru HOSHI
Graduate School of Information Systems

The University of Electro-Communications, Tokyo, Japan

Abstract
This paper presents a new style of integration called

navigational integration f o r mobile users to integrate
several information sources in the W WW framework.
W e illustrate basic ideas of the navigational integm-
tion and describe a design of a system architecture that
executes the navigational integration.

1 Introduction
In today’s computer internetworks, many informa-

tion sources provide their contents via WWWs by
embedding their client applications into Web pages.
For example, ordinary HTML document servers, CGI-
form texts with backend database servers, and java-
based clickable maps with backend data services can
be found everywhere in the Internet. Let us call
such an information source a Web Information Source
(WIS). In general, these WISs are maintained by mul-
tiple autonomous organizations. Let us call such an
organization a cell. In this environment, mobile users
move across cells and download client applications
from WISs to query information. This environment
is shown in Figure 1.

This paper proposes an appropriate style of integra-
tion for mobile users who move from one place to an-
other, find new WISs and generate integration among
those WISs by themselves on their mobile computers
in a disconnected mode. Our integration style, called
navigational integration, is based on the hyperlink con-
cept of the WWW framework and promotes utilization
of filtering methods provided by each WIS. Previous
works[2, 1, 41 discuss integration of heterogeneous in-
formation sources (including WISs) on a centralized
site of developers but do not consider an appropriate
style of integration for mobile users.

The paper is organized as follows. Section 2
presents an example of the navigational integration
and describes goal of our work. Section 3 describes a
system overview. Section 4 describes a system design.
Section 5 describes an automatic semantic-conflict res-
olution that is a necessary mechanism for mobile users

Figure 1: Web Information Sources in a mobile envi-
ronment

to define their integration, followed by concluding re-
marks.

2 Navigational Integration
2.1 Example

To understand our navigational integration clearly,
let us explain the navigational integration by using
the example in Figure 2. Suppose that there are
two WISs. In Figure 2-a, the first WIS (WIS1) is
an ordinary WWW document server. It consists of
a Web front-page and some HTML result pages (un-
der a given DTD) describing departments; further, the
front page includes URL links to these HTML-pages.
In Figures 2-b, the second WIS (WIS2) is a CGI-based
WIS having a front page through which a user can in-
put condition parameters and activate a button link
to retrieve a dynamic result page. Thus, the links on
the front pages can be regarded as methods that in-
voke the information server of the WIS to generate the
result pages. Then, the user wants to generate a new
WIS (WIS3) from the original WISs by embedding de-
rived links that invoke methods of the database server
of WIS2 into the result pages of WIS1. In this exam-
ple, the derived links pass the data (i.e., laboratory
name) from the output page of WISl to WIS2 as the
input conditions to get the result page of WIS2 (see
Figure 2-c). When the user selects these derived links,

0-7803-5582-2/99/$10.00 01999 IEEE 270

Front Page Result Page

I

’age

I Laboratory Into 1

; - I
(bl The second WIS (W162) L _ _ _ _ _ _ _ _ _ _ _ J

Front Page of WISl Result Pane of W181 Result Page of WIS2

Service invocution of the WIS2 is ernbedded us
U derived link in the result page of the WISI

(c) Navigational Integration (wIS31

Figure 2: Navigational integration

he can navigate between contents of the web pages of
two WISs.

The style of integration described above is called
Navigational Integration. A newly-generated WIS
(e.g., WIS3) can be regarded as a navigationally-
integrated view among several original WISs. Then,
our goal is to allow mobile end-users to define such a
navigationally-integrated view1 on mobile computers.
2.2 The Goal

To achieve our goal, note that only client-parts of
WISs are downloaded to users’ computers. A client
part of a WIS consists of a front page and data-access
functions of the WIS (e.g., as shown by the dotted
areas in Figure 2-a and 2-b). Thus, the following abil-
ity is required: by using the downloaded client-parts,
mobile usem can generate a new client-part which per-
forms navigational integration among the WISs. Fur-
ther, this generation must be done solely on a mobile
computer in a communication-disconnected mode.

Let us return to Figure 1 and show the overall
processing steps taken by mobile users. In this en-
vironment, mobile users move across cells and collect
client-parts of WISs. Next, they can disconnect their

By the term “define navigational integration”, we mean to
define a navigationally-integrated view.

a resu l t page
i n HTML f i l e

Figure 3: Components of a WIS

computers from networks and define navigational in-
tegration by using original client-parts on their mobile
computers. Finally, they reconnect their mobile com-
puters to the networks and execute new client-parts
to perform navigational integration. In Section 3, we
describe an architecture for realizing this execution
environment.

3 System Overview
3.1 Model of a WIS ~

To apply a WIS to our approach, it must be a two-
part structure, consisting of a backend WWW server
and a client application embedded in its Web page as
shown in Figure 3. The client application must be
divided into two parts: a front page part (FP) and
a data access part (DA). The F P part receives input
from a user while the DA part sends the input data to
the backend server and receives a result page. Thus,
the DA part consists of a server-access method and
specification of structure of data in the result page.

WISs of ordinary HTML documents and WISs with
CGI programs satisfy the above model, but a Java ap-
plet satisfies our approach if its methods implemented
for the FP part and those for the DA part are sepa-
rated.
3.2 Our Approach to Define Navigational

Integration
To integrate information among several WISs, a

common data model is required for wrapping WISs
into a uniform manner. Based on the model of a WIS
shown in Figure 3, the pre-processing is that the F P
part and the DA part of a WIS must be wrapped into a
common data model. We use the object-oriented (00)
data model to describe structure of data and methods
of these two parts. Thus, we can use a concept of path
e;cpressions[3] to specify data elements and can invoke
server-access methods through interface methods.

After WISs are wrapped into the common data
model, now let us consider the way to define navi-
gational integration in a declarative form and the way
to generate a new client-part for executing the navi-
gational integration.

To define navigational integration in a declarative
form, we use a query command whose WHERE clause
specifies predicates that define how to express derived

27 1

(pj (=I p1 -
Where S->MethodOfS($val)

(b) and R->MethodOfR(S.a)
and R.b.y = S.c.x

Figure 4:
(written by WHERE clauses)

Two modes of navigational integration

links in the navigational integration. Consider nav-
igational integration from a WIS S to another WIS
R. In general, the navigational integration from S to
R can be defined by a WHERE clause which has two
parts giving derived links. The first part gives a de-
rived link from the front page of S to a result page of
S. This part is written as an invocation of the server-
access method of the interface definition that wraps
S. (e.g., see the WHERE clauses of Fig.4-a or 4-b.)
This method is invoked with variable(s) that will be
bound with constant values later. On the other hand,
the second part gives a derived link from a result page
of S to a result page of R. This part can be written
in two different modes. Figure 4 illustrates these two
modes with their WHERE clauses. These modes are
as follows:

(i) The first mode (Figure 4-a) is to embed the
server-access method of R as derived links into the
data elements in the result page of S. In each link,
the data element of S is passed as argument values
of the method. Through this server-access method,
the native method understandable by R is called to
retrieve a result page.

(ii) The second mode (Figure 4-b) is to embed the
server-access method (of R) and equality predicates
as derived links into the data elements of the result
page of S. In each link, a result page of R is retrieved
(by the first mode) and then another data element in
the result page of S is related with an element of the
result page of R.

In this way, navigational integration is described
by a query command. The next step is to build a new
client-part. To do this, the query command must be
embedded into the front page of S. In case that S is an

Figure 5: Processing of navigational integration

ordinary document, the variables in the first predicate
in the WHERE clause are bound with constant values
of data-elements on the front page of S. In case that S
is a CGI-form WIS, the variables are bound with the
parameters in the CGI-form. Thus, users can execute
the query command through the front page of S. In
the next subsection, we describe a system architecture
for executing the query and its processing steps.
3.3 System Architecture and Integration

To explain a system architecture and the cooper-
ation between its modules for executing navigational
integration, let us use Figure 5. In this figure, there are
three cells. All cells share a common knowledge called
domain hierarchy for automatically resolving semantic
conflict of data between cells (see detail in section 5).
Each cell has a main information resouxe (MIR) as
a yellow-page server. In addition, a wrapper module
that wraps a WIS is placed on the MIR. The client-
part of each WIS is wrapped into interface definitions
described in subsection 3.2. In the existing integra-
tion systems[4, 21, they place a mediator module on a
server for: (i) resolving semantic conflict among data
of WISs, and (ii) executing a user’s query. In con-
trast, we handle these two works by using two differ-
ent modules. For the first task, we place a mediator
module on the mobile computer side. Our mediator
uses the downloaded client-parts of WISs, helps a mo-
bile user to solve semantic conflict among data, and
define navigational integration in a query command.
Further, it automatically embeds the query command
into the front page of WIS1. For the second task, we
place the module called a proay eaecutor for perform-
ing this task on the MIR.

Then, a user can execute navigational integration
by loading the new client into his browser. The steps

Process

212

<!ELEMENT depanrnenl (depName. laboratories)>
<!liLliMI!NT laboratories (Iahoralory*)>
<!ELEMENT laboralory (IahName.slaffs>
<!ELEMENT staffs (sialP)>
<!ELEMEN1 slaff (position.name)
(a) The mn of the dwutmant W e b page

Department

Laboratory
lab-

string setof OID
<LaLukmain> <setof $Staff>

Staff

Figure 6: A DTD and an equivalent schema

of processing are shown in Figure 5. By selecting de-
rived links, the user can send the query command to
a proxy executor. This proxy executor controls coop-
eration between other MI& in different cells. Exactly
speaking, it communicates with the other proxy ex-
ecutors of the MIRs that manage the WISs specified
in the query command to fulfill its work. However,
from the users’ view, the processing steps of naviga-
tional integration proceed in a sequence shown in the
left lower box of Figure 5.

4 System Design
Based on the framework in the previous section,

this section first describes a common data model for
wrapping a WIS. Then, we describe path expressions
and a query language for expressing the navigational
integration.
4.1 Common Data Model

The common data model we use is a variant of the
object-oriented (00) model. As a unique property,
we add a concept called domain hierarchy, which will
be described later in Section 5.

In our policy, a web page is regarded as a nested
structure of objects. Further, in order to model a
function-embedded WIS such as a CGI-page, we give
methods to this structure. Such a structure of objects
with methods is called an interface definition in our
system. Then, we wrap the service of a WIS by a
set of interface definitions. (Nested data occurring in
a web page are represented as relationships between
interface definitions via multi-valued attributes.)

Let us show how to wrap the DA part of the first
WIS of Figure 2-a. This WIS is assumed to be a struc-
tured document, whose DTD is given in Figure 6-8.
Then, Figure 6-b describes an equivalent schema in
our data model and Figure 7 shows one part of the
interface definitions wrapping the first WIS.

In order to explain interface definitions, let us use
the interface definition of Department shown in Fig-
ure 7. This interface definition has three attributes:

database ISInformation
address http://HOSTl/cgi-bin/execute.pl
interface Department
body

url URLDomain,
deptName DeptDomain,
laboratories setof Laboratory,

method
public:

private:

implement

static (DepartMent) getByURL(URLD0main Sur11

OID new(string $deptName,OID Slab)

sub new (
my $package = shift;
my $deptName = shift;
my SlabOID = shift;
my Sthis;
$this = DepartMent->newEmptyObjectO;
$this->{deptName) = SdepName;
push(@{$this-z{laboratories)),$labOID);
bless $this;
return Sthis;

1 . . .
endInterface

Figure 7: An interface definition for Department

UTI , deptName and laboratories. The second attribute
is a single-value of string and its domain is DeptDo-
main. The third attribute is a multi-value keeping
OIDs of instances of a Laboratory interface. Using
such a multi-valued attribute, we can represent nested
structure of documents. The first attribute url is an
additional element keeping the URL of the original
document page. It does not appear in the DTD shown
in Figure 6-a.

As shown above, the data-types in our system are
atomic data or OID(s) (as an object or a set of ob-
jects). Domain must be assigned for all atomic data.
Here, a domain in our approach refers to a pool of
values that have an exact data-format and meaning.

In the method part, there are two types of meth-
ods; a public type and a private type. Only public
methods are invoked explicitly. In this example, get-
ByURL() method is the way to retrieve an original
document having a given URL.

Some of public methods can have a keyword static
in their method signatures. Roughly speaking, a static
(and public) method indicates a class method to re-
trieve a result page of a WIS by invoking a native
method and extract data from that result page to cre-
ate objects. The other methods are used for filtering
such generated data-objects.

4.2 Path Expressions and Query Lan-
guage

A path expression has the form

to t { A i } t ... -+ {A ,)

273

http://HOSTl/cgi-bin/execute.pl

where t o is a variable representing an object in-
stance of a top-level interface definition (TO) in a Web
page. Further, {A i } -+ {Ai+l} means that the do-
main of Ai is defined as setof Ti+l where Ti+l has an
attribute Ai+l (see the example of the interface defini-
tion in Section 4.1). The result of the path expression
is the set of objects or values that can be reached from
t o via the specified attribute chain. For example,

D + { l a b o r a t o ~ i e s } [*] -+ {s taf fs } [O] +
{ f ul lName}

is interpreted to get all full names of the first staffs
in all laboratories in the department where D is a vari-
able representing an object instance of the interface
Depar tment . The [j] is used to specify the object
ordered j and [*] is used to specify all objects in a
multi-valued attribute. For convenience, this [*] can
be omitted.

Here we are ready to demonstrate how to define
a navigational integration by a query command. As-
sume that a mobile user finds the two WISs (W E 1 and
WIS2 in Figure 2-a and b) and wants to define naviga-
tional integration of them (W E 3 in Figure 2-c). The
following script is a query command to describe navi-
gational integration from a given (single) department
page of the first WIS (whose url = $URLx and is bound
with a constant value later) to the second WIS:

’

select
from
source

where

*
D in Department, L in LabBuilding
Department of ISInformation
on http://HOSTl/cgi-bin/execute.pl,
LabBuilding of uecdbWeb
on http://HOST2/cgi-bin/execute.pl
Department->getByrmL($URLx) ,
LabBuilding->getByLaboratory(

L:Lab2JLab(D:LabDaLab(
D->Claboratories)->ClabName))))

For example, in the above SQL-like statement, get-
ByLaboratory is the method defined in the interface
definition of the second WIS; this method is the ma-
jor function of this WIS. As described earlier, data in a
Web page can be specified using path expressions. The
path expressions D + {laboratories} + { labName}
extracts the laboratory names appearing in the de-
partment Web page. Due to the semantic conflict be-
tween laboratory data in WISl and the required argu-
ment of the method getbylaboratory() of WIS2, the
LabD2Lab and Lab2JLab functions are inserted to re-
solve this conflict. We will describe how to detect the
semantic conflict and its resolution by mediators on
mobile computers in the next section.

As a result, the above SQL-like script can execute
navigational integration (of the Data-Access parts)
with resolving semantic conflicts.

As explained in Section 3.3, the mediator automat-
ically embeds the query command into the front page
of the first WIS. This is easily done in case of ordinary
Web pages or CGI-form pages by replacing the execu-
tion tag of HTML source with the query command. In
case of a Java applet, it requires the template to gen-
erate a Java program that inherits the original applet
and overrides the methods that act as the DA part of
the first WIS.

5 Semantic Conflict Resolution and

To provide mobile users with ability for defining
navigational integration, the semantic conflict among
data of different WISs must be resolved automatically.
To achieve this ability, we propose a domain hierarchy
(DH), which is maintained among all cells in a given
network. Here, a domain in our approach refers to
a pool of values that have an exact data-format and
meaning. Figure 8 shows an example of the domain hi-
erarchy, which is maintained by two cells. The domain
hierarchy consists of two components: (i) multiple lo-
cal domain hierarchies (LDHs); each LDH is main-
tained individually in each cell (shown as the local
cell repository in Figure 5) , and (ii) a common domain
hierarchy (CDH); this is shared by all cells (shown as
the region repository in Figure 5). When multiple cells
share the same CDH, these cells are called a region.
The domains in each LDH are defined for describing
format/meaning of data used in that cell while the do-
mains in the CDH are defined as a set of standard data
formats/meaning for data exchanging among data of
those cells.

As described earlier, all WISs are wrapped into a
unified form called an interface definition. Attributes
and arguments of access methods are mapped to the
domains in the local domain hierarchy of the cell (see
Figure 7). Moreover, domains of each LDH are linked
to the domains in the CDH for providing semantic
convertibility among data of WISs in different cells in
the same region.
Construction: Now, we describe how to build a do-
main hierarchy. Domains are organized into a hierar-
chical structure, where a type of hierarchical relation-
ship is a one-to-one relationship (data-format conver-
sion), or an is-a relationship, or a part-of relationship.
Therefore, for any given domain D, its parent domain
is equal to, is more general than, or contains D. The
hierarchy links (depicted by bold links in Figure 8)
represent such hierarchical relationships.

As a result, for any given domain D, D has a hi-
erarchical relationship with its parent. However, D
may have other relationships with some domains Dj

Script Generation

274

http://HOSTl/cgi-bin/execute.pl
http://HOST2/cgi-bin/execute.pl

Figure 8: Domain hierarchy and downloading mecha-
nism

(i = 1, ..., n). These relationships are described as
point-to-point links (depicted by fine links in Figure
8) between D and 0:. Therefore, D can have one hier-
archy link to its parent and several point-to-point links
to Di. (In implementation, each link is described by
conversion functions for converting semantics between
the two associated domains.) We refer to these links
(with their conversion functions) as the domain rule
of D.
Mediator and Script Generation: As described
in Section 2.2, a mobile user must download software
components describing services of WISs from their
cells into his mobile computer. This software com-
ponent of a WIS consists of (i) a front page of the
WIS, (ii) interface definitions of the WIS, (iii) domain
rules of the domains used in these interface definitions,
(let us refer to these domains as X), and (iv) the do-
main rules of the ancestor domains of X. Therefore,
as a result of downloading, a sub-part of the DH is
maintained in the user’s mobile computer. The down-
load processing is shown in Figure 8. In this figure,
the domains and interface definitions surrounded by
the dotted line are packed and downloaded into the
mobile computer.

The mediator on the user’s computer uses the
downloaded sub-part of the DH, and it resolves the
semantic conflict between two data of different WISs.
To do so, the mediator must find conversion paths be-
tween domains of the conflicting data, and choose the
shortest one as a result. In our scheme, a conversion
path between two domains is assured to exist if there

is: (i) a $domain khat b am ancestor of both domains; or
(5) only one point-to-point link between ancestors of
both domains.a For example, in Fimre 8, the conver-
sion path from the domain LabDomain to ;the domain
JLab is LabDomain + Lab + JLab. The conversion
functions along the conversion path are inserted to
convert the semantics between them.

Conversion paths are not always legal. If a conver-
sion path causes a many-to-many relationship ‘between
a start domain and a destination domain, unexpected
data will emerge. Such a conversion path is regarded
illegal. The mediator must consider this restriction
when finding a conversion path.

According to the above algorithms, the mediator
in our system automatically resolves semantic con-
flict and generates an appropriate query even in a
communication-disconnected mode.

6 Concluding Remarks
In this paper, we have proposed navigational in-

tegration as a new style of integration for mobile
users in the WWW framework. We have also pro-
posed the system architecture that is modified from
the wrapper/mediator architecture for supporting the
navigational integration. For resolving semantic con-
flict among autonomous WISs, a distributed reposi-
tory mechanism called domain hierarchy is proposed.
Currently, a prototype of our system works for various
WISs, including WWW document servers, CGI with
database servers, and clickable maps.

This paper discussed semantic conflict resolution
among atomic data-values in structured documents,
but our approach can be extended for semantic con-
flict resolution in heterogeneous structures and het-
erogeneous domains. This will be presented in [5].

References
D. Florescu, A. Levy and A. Mendelzon: “Database
Techniques for the World-Wide Web: Survey”. SIG-
MOD Record, 27(3): pp. 59-74, September 1998.
M. Fernandez, D. Florescu, A. Levy, D. Suciu.: “A
Query Language for a Web Site Management System”,
SIGMOD Record, 26 3): pp. 4-11, September 1997.
M. Kifer, W. Kim, 4. Sagiv. “Query Object-Oriented
Databases”, In Proc. of the AGM SIGMOD Conf, pp.
393-402, California, USA, 1992.
S. Chawathe et al. “The TSIMMIS project: Integra-
tion of heterogeneous information sources.” In Tech.
Rep of 100th DBS of Information Processing Society
of Japan, pp. 7-18, Tokyo, Japan, 1994.
W. Sae-Tung. “Integration of Autonomous Web Infor-
mation Sources by Mobile Users”. Ph. D. Thesis, UEC
(in preparation). 1999. , - - , I

In general, if a domain X has an ancestor who knows a
point-to-point link to 2 and if the same condition holds for
another domain Y , then X and Y are reachable from each other.

275

