
Gaming-Simulations of Multi-Agent Information Systems

Using Large Databases: The Concept and Database Algorithms

OHMORI,Tadashi HOSHI,Mamoru
Graduate School of Information Systems, The University of Electra-Communications.

E-mail: {omori,hoshi}@is.uec.ac.jp JAPAN

Abstract
Recently much attention has been paid to various usage
of large history-databases, such as discoverying knowledge
from log-databases. In this paper, we propose another
new applications of history-databases, called a ‘game-style’
(or gaming-) simulation of multi-agent information sys-
tems; here, a ‘multi-agent system’ refers to the system
composed of multiple agents who work on a shared and
large database. This paper discusses the simulations of
such multi-agent systems on a large database, where this
database is chosen from history-data.

To explain our ideas, consider a trading-market system
in which multiple supplier-agents work on a shared and
large ‘purchase-order’ database; also, assume that these
suppliers compete for occupying better purchase-orders
there. Then we consider this competition to be a game,
and simulate the game on a past ‘purchase-order’ database
of large volume.

This paper discusses the above ‘game-style’ simulations
of multiple agents on a shared and large database D; of
course, such D must be chosen from a history-database
so that it exactly imitates the simulated situations. (e.g.
consider using the ‘1994-April order’-database to imitate
the ‘1995-April’ situation.) We discuss how to execute
this simulation-problem on a centralized parallel database-
system which holds all of history-data.

Our study is useful to test/verify agents’ strategies with
much more reality by using a real (and often very large)
history-database. To clarify the concepts of our study, this
paper describes examples at first. Next we formalize them
as a new multi-agent problem using a shared database.
After that, we propose new efficient database-algorithms
for this formal problem.

1 Introduction

In recent parallel database applications, how to utilize
huge history-data, such as sales-log data of terabyte-
scale, has been a hot issue [4,7]. Recent popular
ways are data mining, operations research, and statis-
tic analysis [7,14]. These are used for finding useful
‘knowledge’ from log-data and for building new as-
sumptions and/or new behavioral strategies about tar-

Proceedings of the Fourth International Conference on
Database Systems for Advanced Applications (DASFAA’95)
Ed. Tok Wang Ling and Yoshifumi Masunaga
Singapore, April 10-13. 1995
@ World Scientific Publishing Co. Pte Ltd

get information-systems. However, after finding such
knowledge, how can we test the effects of such new
assumptions or strategies in the target systems? One
solution is, clearly, a simulation of the target systems
under given models.

From the above motivation, this paper proposes
new applications of history-databases, called a ‘game-
style’ (or gaming-) simulation of multi-agent informa-
tion systems; here, a ‘multi-agent’ information system
refers to the system composed of multiple agents who
work on a shared (and often very large) database. This
paper discusses the simulations of such systems on a
large database, where this database is chosen from
history-data.

Fig.1 describes the concept of our simulation-
problem: As shown in this figure, today’s many in-
formation systems are composed of multiple agents
who work on a shared database, D, of large volume
[5,16]. (e.g. consider a market-trading system on a ‘l-
month purchase-order’ database, which has millions
of advance-orders for a month.) In general, all of
such D’s are registered in history-data; also, the ac-
tions of agents on each of such D’s are registered in
history-data. Therefore, it is possible to simulate the
behaviors of the agents on a given past database DO;
of course, DO must be chosen so that it exactly im-
itate the situations to be simulated. Also, as shown
in Fig.1, it is general that all of the history-data are
stored in a centralized database system. Thus we dis-
cuss how to compute the above simulation-problem on
a today’s parallel database system [4,8], assuming that
the database system holds all of the history-data.

To explain our simulation-problem by an example,
consider a trading-system in a market, where multiple
suppliers (= the agents in Fig.1) work on a ‘purchase-
order’ database. Also let us assume the following: (i)
These suppliers compete with one another, and try to
make better service-plans from this ‘order’-database.
That is, each supplier searches for better purchase-
orders, and tries to acquire them exclusively. (For each
supplier, his service-plan or market-share refers to the

95

Real-World
Multiagent Info.System

agent

)‘*
fh

I ‘Y

Test your strategy in
the gaming-simulations

3 c;sing:
+ Agent models; &

* Hlstory-Database
Am I

The system-activities are all
/

A centralized Data-Warehouse
registered as history-data. (containing all the history-data)

Figure 1: Gaming-simulation on database

set of those purchase-orders that he has exclusively
acquired.) (ii) I n order to get a better market-share,
each supplier can change his behavioral strategy dur-
ing the above competition. Also, he can utilize some
rules of taking-over. (i.e. Under some conditions, a
supplier can take away the market-share of another
supplier .) Then, on these two assumptions, the
simulition of this system is a ‘game’ among the sup-
pliers; i.e. this is the game that each supplier tries to
acquire a better market-share than the others. 0

Now, in the above example, what behavioral strat-
egy is better for a supplier? When/how should he
change his strategy? To answer these questions,
this paper proposes the simulations using a history-
database (described in Fig.1); that is, for the above
example, we give the (assumed) behavioral models of
all the suppliers, and then execute the above ‘game-
style’ (or gaming-) simulations on a past ‘purchase-
order’ database. Such simulations clarify the effects
of the assumed models on the basis of real (and very
large) history-data. Then, from these effects, the as-
sumed agent-models can be improved.

About related works, a gaming-simulation is orig-
inally defined as a simulation of game-style played
by some human/programmed players [6]. Various
gaming-simulations have been studied in business ap-
plications, such as an urban-policy simulation on a
city-model or a trading simulation[6]. However those
studies have used small volume of data, which are
miniatured abstractions of the large databases used in
the real-world [6]. Various multi-agent problems have
been discussed in distributed AI[5,16], but they have
not considered large database processing.

In contrast, our unique point is to use real (and
large) history-databases directly in the multi-agent
simulations. This point is significant because, in or-
der to simulate ‘real-world’ multi-agent systems, we
need to use large databases composed of history-data.
In other words, there are many useful multi-agent sys-
tems that directly work on large databases. The above
example (= the simulation of the market-trading sys-
tem that deals with the advance-orders for a month) is

such a case. As another example, consider the urban-
policy simulations among some policy-making agents,
and assume that these agents must decide the city-
developing plans for each month; then this decision-
simulation is nothing but a cooperative planning on
the log-database D, where D describes all the city-
activities over a l-month period. Such D’s have large
volume of raw data, including monthly trading-logs,
population database, etc. Also, at the early stages of
these simulation-examples, we do not know any good
miniatured abstractions about the used log-databases.
Thus our gaming-simulations (Fig.1) need to use such
large databases directly.

By using such raw history-data, our study brings
two advantages: (i) We can test/improve the agents’
strategies with much more reality of data. (ii) From
the observed data in the simulations, we expect to
discover better abstractions of the target systems;
these abstractions are useful to develop better system-
/agent-models, which provide a more simplified simu-
lation of the target systems.

Because of the necessity/advantages above, our
simulations directly use very large history-databases
stored in secondary storages. It causes some techni-
cal problems; therefore, this paper describes the fol-
lowing issues: (1) First, we describe examples for the
multi-agent gaming-simulations on a large database,
and clarify their concepts. (2) Second, we formalize
those examples as a new multi-agent problem using
a database. (3) Third, we propose efficient database-
algorithms to compute this formal problem on a par-
allel database system.

Concerning the above issue (3), our study appar-
ently needs concurrent/iterative execution of agents.
We first describe that such an agent is a transaction
reading/writing large bulks of data. Thereafter we
propose a dedicated concurrency-control scheduler [1 l]
for such transactions. For the iterative operation, we
propose a variation of a rule-base [2,3] algorithm.

Section 2 describes examples. Section 3 describes
general concepts of our gaming-simulations, and for-
malizes them with database-processing models. Sec-
tion 4 proposes our algorithms, followed by experi-
ments in Section 5. Section 6 discusses the applica-
bility of our study. Section 7 summarizes the paper.

2 Examples

2.1 Market-share competition game

To clarify the concept of our study, this section de-
scribes an example and its database-processing code.
The used example is the market-trading competition,
mentioned roughly in Section 1:

96

Supplier ID x y 2 3 agents

Figure 2: mapping from suppliers to log-files

Table 1: Conditions of Market-Competition game
(a): Selection Conditions of 3 suppliers on 4 areas.

Supplier Areal, Filter Predicate Pl (= P2)

X A, C Period E Range1

Y A, D Customer E Range2

Z 6, D Item E Range3

(b): Constraint Conditions
‘Six)= Gain of a supplier, x, under a given plan).

I 1: S(x) < limit0 for all x. and
2: sixj - S(y) < limit1 for all (x,y) =

(W), (YZ), (Z,X>.

[EX.l]: Consider the following trading-system in
a market: This market has three suppliers working
on a (shared) ‘purchase-order’ database (denoted by
DBc). The suppliers compete with one another in
order to make their service-plans (= market-shares)
from this current database DBc: i.e. this is the game
that each supplier tries to get a better market-share
than the others. ’ Also we assume the following: (1)
The market has four areas. (To simulate this market,
we use ‘sales-log’ files of these areas; i.e. these files
are used as the current purchase-order database (=
DBc).) (2) Each suppl ier has a behavioral strategy.
Using the strategy, he searches for better purchase-
orders to be served in the market, and tries to acquire
them. If this trial succeeds, he supplies those orders
exclusively. (3) The game is over when there remain
no purchase-orders in DBc. (4) When the suppliers
have finally made their service-plans, these plans must

satisfy some constraints. Cl
In EX.l, we assume that the purchase-order

database is very large. (This assumption is often true
in real cases. For example, consider that the market
deals with the advance-orders (= the orders having an
appointed time of supply) in a week. If many retail-
stores issue such ‘l-week advance-orders’ on the basis
of their weekly sales-log data, then the raw ‘order’-
database has millions of records. In this case, the sup-
pliers must make weekly service-plans from this large
database.)

‘For each supplier, his service-plan (or market-share)
refers to the set of those purchase-orders that he has ex-
clusively acquired. We assume that a purchase-order is ex-
clusively served by one supplier. (i.e. one purchase-order
is not shared by multiple suppliers.)

To simulate this system, we use the following re-
lational database. (filename[list of attribute-names]
gives the relational schema of a file.) In the follow-
ing, each file is the history-data describing a situation
of a past time; we choose these files from a history-
database in order to imitate the simulated situation:

[Database] 1: A sales-log file per area= Area[ltem,
Customer, Period, Quantity]. Its tuple [I, C’, T, Q] orig-
inally means, “In an area (Area), a customer-class (C’)
purchased an item-class (I) by a quantity (Q) at a
time-period (T).” . During one simulation, this tuple
means also that the same order is now issued in the
current purchase-order database. ’ There are four
areas: A, B, C, D. All the suppliers share these files.

2: A capacity-file per supplier = Supplicr[ltem, Cus-
tomer, Period, Quantity). Its tuple [I, C’, T, Q] means,
“When a supplier (Supplier) supplys the item-class (I)
for the customer-class (C’) at a time-period (T), the
maximum amount to be supplied is Q.” . The suppliers
are X, Y, Z. Originally, these files describe the suppli-
ers’ capacities that were available at a past time. In
a simulation-run, we use these files to express the cur-
rent states of the suppliers. (Note: each file is denoted
by its area-ID (= A, B, C, or D) or its supplier-ID (=
X, Y, or Z). [Item,Customer,Period] is the key attribute
for each file.) 0

In a simulation, we use the above sales-log files as
the current database DBo. Then, Fig.2 shows which
sales-log files are manipulated by the suppliers. As
shown in Fig.2, we assume the following behavior for
each supplier z (= X, Y, or Z):
x chooses two areas, Area1 and Aread, and then se-
lects some tuples under filtering predicates, Pl and
P2, respectively. (Table.l-(a) describes these ar-
eas/predicates for each supplier.) Then, by using these
tuples, the supplier x decides the purchase-orders to be
served by the following strategy:
[Strategy]: Let an entry refer to a value (of a tuple)
at the attributes [Item,Customer,Period]. Then, for a
given entry E, assume that x has a capacity Q3; also
assume that the two filtered log-files, apl(Area1) and
apz(Area2), have the tuples whose quantities are Ql
and Q2, respectively, at the entry E. Also, for the
entry E, SUM refers to (Ql + Q2 + Q3). Then 2
tries to occupy the tuples whose SUM’s are as great as
possible. (Note: If z has exclusively acquired a tuple t,
it means that z supplies the entry oft by the amount
of (Ql + Q2). SUM is set to 0 if Ql = Q2 = 0) 0

When the game is over, all the suppliers will have
decided their final service-clans. At this time, these

*In a simulation, the time-period (T) of a tuple is in-
terpreted as an appointed time of supply or delivery. The
customer-class (C’) represents a retail-storeID with its tar-
get class of customers.

97

LineNo rule-z (K) {
1 T = L W apI W cp2(R2) ;
2 Rank tuplts of T by using their SUM’s ;
3 Put back some acquired tuples to Rl, R2;
4 R2 = R2 - CWM>K(T) i
5 Rl = Rl - FSUM~K(T);
6 Append QS~M>K(T) to the answer-file of 2;

7 1
(Rl,R2 = log-files of Areal, Area2. L = the supplier’s
capacity-file. SUM = gain of a join-result tuple. The an-
swer-file oft holds the acquired tuples of z. A set-update
operation is expressed by relational set-difference.)

Figure 3: Rule for the supplier 3: (= X, Y, or Z)

plans must satisfy all the constraints of Table.l-(b).
In this table, the function S(z) represents the total
gain of 2. (S(c) is equal to C(SCrM) for all the tuples
that the supplier, 2, has decided to supply.) Thus,
in a simulation-run, each supplier 2 works in order to
increase S(t) over the gains of the other suppliers.

2.2 Coding

This subsection describes a database coding of EX.l.
In the following, an agent refers to a component to
manipulate a database. Also, a rule refers to the pro-
cedure specifying the actions of an agent. Thus in
EX.l, each supplier is an agent.

Fig.3 lists the procedure of a supplier-agent 2. In
this figure, the 1st line (denoted by linel) first makes
the outerjoin of the three files on the entry of [Item,
Customer,Period] 3. Next, line2 classifies the result-
table of join-operation (abbreviated to ‘join-result’
or ‘join table’), T, into some ranks (Rank[MAX] to
Rank[O]) 4. This ranked view is used to decide the
target tuples: At line4 and 5, this rule decides an ap-
propriate set of tuples to be served, and then acquires
them through the set-operations (= deletion) from Rl
and R2. Line3 of Fig.3 expresses a negotiation [5,16];
here, the agent puts back some acquired tuples to Rl
(or R2) if a constraint related to himself is false, or if
these tuples are taken away by another agent.

Fig.3 exemplifies that in our general simulation-
problem (of Fig.l), every agent describes his strate-

31n Fig.3, Rl (or R2) refers to the sales-log file of Area1
(or Are&) for a supplier z. (See Table.l-a.) L refers to
the capacity-file of x. Then the result of join (called ‘join-
result’ or ‘join table’), T, has the schema of [Item, Cus-
tomer, Period, SUM, tid of Rl’s tuple, tid of RZ’s tuple].
We use a full outerjoin [9] for T; i.e. If a relation Ri has no
tuple matched with a given entry Key, then the outerjoin-
table T (= Rl W R2 W R3) has a tuple of the entry Key
where Q; = 0 and tid=NULL for such i. (a’ = 1,2,3). To
update a tuple, we use its tuple-identifier (tid).

*the i-th rank = { t 1 t is a tuple s.t. Rank[i + l] > t’s
SUM 2 Rank[i]}. (i = MAX, MAX-l, .,., 1, 0)

Linelo.
I i = MAX; K = Rank[i];
2 while (loop-count < limit) <
3 CoBegin /* all rules run concurrently */
4 rule-X(K); rule-Y(K); rule-Z(K);
5 CoEnd /* wait until all rules end. */
6 if (no tuples in the database, AND

Table.l(b) is true) then exit;

ii 3
1 = i-l; K = RankCil;

(rule-= the rule of Fig.3-form for the supplier z.)

Figure 4: simulation-code for EX.l. (C-lang. style)

gies/actions by set-operations. In other words, we aim
to test such ‘set-oriented’ behavioral policies of agents
in the simulations. As the result,, every rule is designed
to read/update large bulks of data. This is a great dif-
ference from traditional ‘tuple-oriented’ rule-systems.

Using the procedure of the agents, Fig.4 describes
the overall simulation-code of EX.l. From here on, let
us abbreviate the j-th execution of the inside of the
while-loop to ‘j-th loop’ or just ‘loop’.(j = 1,2,. . .).
Then, each loop in Fig.4 represents one turn of p&y
among all the agents; there, between CoBegin and
CoEnd, all the rules are executed concurrently without
fixed orders. Because of this concurrent execution, ev-
ery rule of Fig.3-form must exclusively lock its shared
files, Rl and R2 (denoted in Fig.3); but its capacity-
file, L, is a ‘read-only’ file. Under this concurrency
control, we run each rule as a serializable transaction
in Fig.4 5. When all the rules have done their actions
for one loop, the code starts the next loop until the
game is over.

2.3 Other games

The EX.l becomes a more realistic gaming-simulation
by the following five extensions; they are easily imple-
mented in Fig.4 and Fig.3:

(1) The assumption that every agent does not have
global information of the whole system. e.g. In EX.l,
for each (supplier-) agent, he does not know any con-
straints that are unrelated to himself; also, he does not
know the strategies of the other agents; and he cannot
access the capacity files of the other suppliers. About
the other agents, an agent knows only the values of
the gain-functions SO.

(2) In EX.l, at every turn of play, an agent tries to
get some new tuples. We can limit the total amount of

51t is because the strategies/actions of a rule are speci-
fied by set-operations, and because we want to know their
exact effects on a database. To assure this exactness, the
atomic execution of a rule is necessary.

98

these tuples per turn. This ‘limit’ is an abstraction of
‘cost’ or ‘power’ per turn. It makes a fair competition
among the agents.

(3) To get a better market-share, an agent can use
‘taking-over’ conditions: i.e. If some conditions hold,
an agent X can force another agent Y to release tuples
of Y (= a part of Y’s market-share), and then X can
take them over.

(4) An agent can be a state-transition model; thus
he can change his behavioral strategies during a game.

(5) Playing an ‘evolving’ game on several rounds.
(e.g. In EX..l, the first round uses the order-log
database of the 1st week, and the second round uses
that of the 2nd week, and so on.) Here, one round
means playing one game to its end. Then an ‘evolv-
ing’ game means that, at every new round, the agent-
models or the database get evolved according to the
result of the previous round. (e.g. some agents gen-
erate group-cooperation, or the database-schema gets
evolved, etc.) This evolution provides more realistic
games, although it uses large databases.

3 Formalizing the Problem

3.1 Concept of gaming-simulation

Section 1 and 2 have described our study with various
examples. The following points (1 to 5) summarize the
concept of our gaming-simulations using database:

(1) Our problem is to simulate actions of the agents
who work on a large database (as shown in Fig.1).

(2) This simulation uses a large database (D) di-
rectly.

(3) D is chosen from history-data; and a centralized
parallel database system holds all of those history-data
in its secondary storages. Thus the simulation must be
computed on this database system. •I

The above point 2 is necessary because we aim
to simulate real multi-agent systems in the following
three cases: The first case is that a multi-agent sys-
tem works on a current-state database of large volume
(e.g. the case of market-trading games in Section 1 and
2, which deal with the advance-orders in a week). The
second case is that multiple agents make cooperative
planning for a long-term period, and that this planning
uses a large database which describes the raw/statistic
data over this period. (e.g. the case of urban-policy co-
operative planning for each month, in Section 1).

In addition, about the point 2, there is the third
case that the simulations are simplified on the time-
scale. To explain it, assume that in the example EX.l,
the purchase-order database has all the raw data that
describe the system-activities over a month; also, as-
sume that the agents use week-level behavioral strate-

gies (= the strategies depending on the days of a week.
Such strategies do NOT depend on the time-scale of l-
month.) Then we can consider that the simulation of
such EX. 1 has simplified the agent-models on the time-
scale. (It is because, on the ‘l-month’ raw database,
each agent is designed to use his week-level strategy for
all the weeks.) Clearly, this case is not an exact sim-
ulation over the l-month data, but a simplified one
on the time-scale. This simplification is effective to
test/develop better behavioral strategies on long-term
history-data. Section 6.2 will discuss this advantage.

Because of the above useful cases, our gaming-
simulations (of Fig.1) use very large databases, which
are held in a centralized database system. Also,

(4) we assume that our gaming-simulations are ex-
ecuted by a single (human) user 6. i.e. To run a
simulation, the single user must give all the agent-
/system-models of target systems. (or some of the
agent-/system-models may be prepared as the pro-
grammed ones. Also, the user may not know the pro-
grammed agent-models.) In many cases, each agent-
model is designed to use a local strategy without global
information. 0

As a result, by using our gaming-simulations, the
single user can know the effects of various agent-
/system- models on the basis of real history-data; also,
such knowledge enabIes him to test/improve the mod-
els with great reality. These are main advantages of
our study. (e.g. the single user can test/improve one-
agent’s strategy against the other programmed-agents;
or he can develop a better group-cooperation strategy
in an ‘evolving’ game of Section 2.3.) Furthermore,

(5) the tested agent-models (= strategies/actions)
are described by set-operations. (See Section 2.2.) 0

The point 5 is assumed because such a ‘set-
oriented’ agent-model is necessary to roughly sketch
the behavioral principles of an agent. (e.g. A
typical agent-model rewrites/deletes/inserts a large
part of a database through general database-views.)
Such a rough sketch and its improvement are the
significant part for decision-making; thus we aim
to test/sophisticate such ‘set-oriented’ agent-models
through the gaming-simulations on a database.

3.2 Problem definition

In the rest of this paper, we formalize our simulation-
problem, and discuss its efficient computation on a
parallel database system. This subsection describes
our formalized multi-agent problem; we call it a dis-
tributed constraint-satisfaction problem (DCSP) on

60riginally, the term gaming-simulationrefers to a game
played interactively by some human players [6]. This paper
uses this term as a traditional (single-user) simulation on
database, although such original usage is possible.

99

a relational database, denoted by DB-DCSP. DCSP
is a constraint-satisfaction problem modified for dis-
tributed agents, such that every agent does not know
global knowledge [5,16]. Then DB-DCSP is a DCSP
except that agents have relational variables and share
a database as the global information:

[Def. of DB-DCSP] Consider a multi-agent sys-
tem where the agents, denoted by Ai (i = 1,. . . , n),
share a relational database D (= a finite set of rela-
tions). For each agent Ai, assume the following:

1: Ai has a unique variable xi. The value of xi is
a relation r. Ai allocates tuples to xi, where those
tuples are chosen from D. The allocation has two dis-
tinct modes: i.e. the allocation of a tuple to only one
variable (ezclusiwe mode) or to some variables (shared
mode). ’

2: Among the agents, there are boolean constraint-
predicates Pk(xi, ..,z,). (Ic = l,.. .,m). Ai knows
only the constraints including z;, and can evaluate
them. He knows no other information about the other
agents.

3: Ai can have a private relation Li, such that the
other agents cannot read or write Li.

On these assumptions, DB-DCSP is defined as fol-
lows: “For every Ai (i = 1, . . . , n), Ai must find the
value of xi so that all Pk are true. Also Ai must work
as specified in a given behavioral model”. 0

Apparently all the previous examples are generalized
to DB-DCSP. In general, agents work towards cooper-
ative or competitive goals [5]; thus, EX.l is generalized
to a DB-DCSP having competitive goals.

3.3 Processing models

Here we describe processing models of DB-DCSP on a
‘Shared-Nothing’ [4] parallel database system.

[Platform/Cost] As a platform, we use a database
system having parallel (computer-)nodes intercon-
nected by a network [4,8]. Fig.5 shows such a system
of &nodes. In general, every relation is partitioned
into fragments, and these fragments are stored at the
distinct nodes of Fig.5. By this partitioning, the nodes
of Fig.5 execute a database operation in parallel.

Because we aim to use very large database, we as-
sume that all the (not temporary) relations are stored
in disks. (no memory-resident relations). Thus, we
consider only the following costs: the I/O cost to ac-
cess bulks-of-data from/to disks (called ‘bulk-access’),

‘a relation is a set of tuples. This paper uses the term,
‘relation’, as a conceptual relation-table.

8A, can read (= do the shared allocation of) or update
(= do the exclusive allocation of) a tuple t to 2; only when
t is not allocated exclusively to another variable zj (j # i).

Node0 Node1 Node2 Node7

Figure 5: a parallel database system of 8-nodes

and the load-balancing of these data-accesses on the
parallel nodes.

[Data Placement] We consider a range-
partitioned relation [4] or a partially-declustered re-
lation [4] in Fig.5. (They have the advantages of both
less message-overhead and easy database-management
in Fig.5). To model these placements, we redefine the
term a file as follows: a file refers to some subclusters
of a relation, so that one rule-step (= a ‘file-read’ or
‘file-write’ step of a rule) accesses only one file ‘.

Example: Fig.5 describes a file-placement for EX.l
of Section 2.1: there, Node0 has the files A and X;
Node1 has B and Y; and so on. Thus, in Fig.5, each
file of EX.l is not further declustered on some nodes,
but is placed on one node. “0

In general, in Fig.5, a file (F) redefined above can be
further declustered on some nodes; the number of these
nodes is called the Degree of Deelustering (denoted by
OD) of F [4] (DD = 1,2,. . .). Thus Fig.5 is the case
where DD = 1 for each file.

[Transaction model of a rule] As described in
Section 2.2, in DB-DCSP, every rule (for an agent-
model) is a transaction specified by set-operations.
Then, such a rule is a transaction reading/writing
large bulks of data, called a Bulk-Accessing Truns-
action (BTX) [ll]. Th is is explained as follows: In
general, data-placements and file-organizations are de-
signed independently of given rules; hence (1) a rule
cannot use good indices of an operand-file, and (2)

gSuch a file is semantically-clustered so that one rule-
step does not access two files. We intend here that a rule-
step has a filtering predicate, and that the predicate hits
the subclusters represented by one file. e.g. In the range-
partitioning policy, a relation is partitioned into subrange-
fragments. Then, in EX.1, each ‘order-log’ file (= A, B, C,
or D) is considered to be a semantically-clustered subrange-
fragment of the global ‘order-log’ relation (of all the areas).
The capacity-files are interpreted in the same manner.

10‘Declustering a file on k-nodes’ (k = 1,2,. . .) means
‘splitting the file into k-fragments, and then placing the
k-fragments on the k-distinct nodes’. To abbreviate this
meaning, we say ‘DD = k for a file’, or ‘a file has DD
of k’, or ‘a file declustered on k nodes’. e.g. In Fig.5,
‘declustering the file A on 2 nodes’ means that A is-further
split into two fragments, and that the fragments are placed
on two distinct nodes.

100

STEP
1: get S-Lock of L, and build the hash-table, T, of L.
2: get X-Lock of Rl, and outerjoin T with Rl.
3: get X-Lock of R2, and outerjoin T with R2.
4: rank T, and find the tuples to be updated.
5: update R2 through tuple-identifiers.
6: update Rl through tuple-identifiers.
7: commit, and release all the locks.
(S-lock = Shared lock. X-lock = Exclusive lock. At
Step2&3, T is probed by Rl&R2, and is used as the
outerjoin-result table. At Step4, ‘rank’ means classifying
T into the ranks. The steps are executed sequentially.

Figure 6: BTX-model for a Fig.3-form rule

at the start of Fig.4, a rule must scan the files declus-
tered on a very small number of the nodes (e.g. In
Fig.5, DD = 1 for every file); then, owing to (l), when
a rule wants to execute a read-/write-step having a
filtering-operation, it must lock the whole operand-file
and perform a file-scanning operation; hence, such a
rule has to access bulks-of-data. {The point (2) above
easily causes load-unbalancing, as discussed later.)

A BTX is formally defined as follows [ll]:
[BTX model]: a BTX is a sequence of ‘file-read’ or
‘file-update’ steps. Each of these steps scans the major
part of a file. (Index may be used, but a file-scan is a
frequent operation.) Also, each step uses its operand-
file as a locking-granule, which represents any given
predicate-lock. As a locking model, a BTX obeys the
two-phase locking manner. l1 (Appendix.A describes
the cost model of a BTX). 0

As an example, Fig.6 describes the BTX model (=
its step-sequence) that corresponds to a Fig.S-form
rule. We use here the hybrid hash join [4] and assume
that the hash table or its ranking is resident in main
memory. l2 (In Fig.7-(a), we illustrate the notations
of two BTX’s, Tl and T2.)

4 The Database Algorithms

4.1 Technical issues to be solved

For any DB-DCSP, its database-processing code can
be described in the form of Fig.4. Thus the rest of

“i.e. a BTX must acquire a shared(S) (or an exclusive(X))
lock on its operand-file for its read(or write)-step, and then re-
leases all the locks at its commitment. If a BTXl requests a
lock to a fle and if another BTX2 has held a couflicting lock
on this file, the requester (BTXI) gets blocked until the current
lock gets released. (an X-lock conflicts with all the other locks.)

“We assume that a BTX performs its steps sequentially (i.d.
one step after one). Parallelism within a BTX is represented by
executi>g one step in parallel; i.e. if a step wants-to access &
operand-file whose DD > 2, then DD-nodes (= those holding
the file) execute this stepin parallel.

(a>: Transaction models of Tl and T2.

Tl: rl(A:l) + rl(B:3) + wl(A:l).

T2: r2(C:i) + wJZ(A:l) + w2(C:i).

(Note: ri(F : C) (or Pi(F : C)) refers to a read (or write)-step
of Ti to the file F, where C = I/O cost of the step. A BTX
has the step-sequence denoted by step1 -, . . . + step,. T1
is a BTX having 3 steps, where it first joins the files, A
and B, and then updates 50% of A.)

(b): WTPG for when Tl, T2 have started.

Figure 7: Examples of BTX’s and a WTPG

this paper discusses executing the code of Fig.Cform
on the processing models of Section 3. That is, we
consider the situation that a DB-DCSP uses a very
large database stored in a parallel database system.
Then, to compute a DB-DCSP (Fig.Cform code) on
such a parallel database system (of Fig.5), we adopt
the following general execution-manner:

At each loop of a Fig.4-code, do the following pro-
cessing: First, all of the triggered rules (= BTX’s) are
submitted to the concurrency-control scheduler. Next,
the scheduler dynamically schedules appropriate BTX’s,
and executes them on the database system. When all the
rules end their actions that are specified for this loop, the
next loop starts the same processing. 0

Clearly, this manner needs two inherent operations
of BTX’s: i.e. concurrency-control scheduling and it-
erative execution. For these operations, this section
proposes the following algorithms:

(1) Effective concurrency-control scheduling, tuned
for BTX’s: This is necessary because, at the start of
DB-DCSP, every rule (= a BTX) scans the files declus-
tered on a few computing-nodes. That is, in the case
of Fig.5, we must consider that a rule may scan a file
whose DD = 1 to 4 on the 8-node machine. l3 This
fact easily causes load-unbalancing between the nodes.
Thus, for better load-balancing, a scheduler must ex-
ecute much more rules concurrently.

Remember that the rules are BTX’s. Their schedul-
ing has high degree of the locking/resource con-
tention 14, because each BTX needs coarse-grain
(i.e. file-level) 1 oc m and must access large btilks of k’ g

13e.g. To execute EX.l, consider starting the Fig.4-code
on the file-placement of Fig5 Then, each rule of Fig.3-
form (= a BTX of Fig.6) scans the files sequentially, and
also DD = 1 for each of the files. Thus it causes load-
unbalancing.

14i.e. the contention caused by both locking-conflict and
resource-level congestion [l, 1 l]

101

data[ll]. This high-degree contention heavily limits
the degree of concurrency [l,ll]. Thus, in order to
extract rich concurrency of BTX’s, a scheduler must
reduce this contention as greatly as possible. Tradi-
tional locking protocols are for short transactions, and
thus lack this ability [ll].

Owing to this reason, we have developed a dedicated
concurrency-control scheduler of BTX’s [ll]. We use
it for the concurrent execution of the rules.

(2) Differential computation of a rule at the 2nd and
further loops; this is to reduce bulks-of-data accessed
at the iterative execution of a rule (= a BTX). The
same idea are used in traditional rulesystems, but they
are tuned for ‘tuple-oriented’ rules, which update only
a few tuples per loop [2,3,15]. In contrast, DB-DCSP’s
use a BTX having set-oriented database-operations,
such as ‘bulk-read’ or ‘bulk-update’ ones 15; thus we
modify TREAT [2] for such BTX’s.

4.2 The scheduler

This subsection introduces our concurrency-control
way of BTX’s, called the Locally-Optimized WTPG
(LOW) scheduler [ll]. This scheduler uses a
serialization-graph [lo] called a Weighted 7’mnsaclion-
Precedence Graph (WTPG); here, a WTPG describes
the serialization orders between BTX’s, and does also
the locking/resource contention in a schedule. By us-
ing such a WTPG, LOW is aimed at reducing the lock-
ing/resource contention in the BTX’s scheduling. This
subsection explains only the configuration of a WTPG
and how LOW uses it; readers can find the formal def-
initions in [11,12].

[WTPG]: Fig.7-(b) illustrates a WTPG, in which
the two BTX’s (Tl and T2 in Fig.7-(a)) have just
started 16. To build a WTPG, every transaction must
declare, when it starts, its step-sequence including its
I/O-cost information. (i.e. Fig.7-(a) are such se-
quences of both Tl and T2). Then, at the current
scheduling-state Snow, a WTPG is built as follows:

- The nodes represent transactions (= those working

at Snow, as shown in Fig.7-b);
- Suppose that two transactions (Ti and Tj) have

declared a conflicting access to a common locking-
granule. Then, between such Ti and Tj, we set a
pair of shaded edges (called a conflict-edge, denoted
by (Ti,Tj)). It means that Ti conflicts with Tj in
serialization-order, and that the precedence-order be-
tween them is not determined yet. If this precedence-
order is determined, then (Ti, Tj) is replaced by an ap-

15a bulk-read (or bulk-update) operation means reading
(or updating) large bulks of data from/to a database.

16T0 (or Tf) in Fig.lT-(b) refers to the virtual transaction
that is serialized before (or after) any other transaction.

[Function E(q) : q = a lock-request]

Phase 1: In the WTPG of the current scheduling-state,
find all the conflict-edges (Ti,Tj), such that Ti gets
serialized before Tj when granting q. Then replace all of
such edges temporarily by {Ti + Tj}. Next, delete all
the remaining conflict-edges temporarily.

Phase 2: In the above temporary WTPG, find the longest
path (PL) from TO to Tf. E(q) is set to the length of
PL. If a deadlock occurs, E(q) = +oo. (Length of a
path P = the sum of the costs of all the edges in P.)

Figure 8: Procedure of Function E(q)

propriate precedence-edge immediately. (e.g. In Fig.7-
b, (Tl,T2) is set because Tl conflicts with T2 on the
file A.)

- A precedence-edge (e.g. a solid edge in F&7-b),
denoted by {Ti --+ Tj}, means that at S,,, , Ti is
serialized before Tj.

- Every edge has a cost (OT called a weight), which
represents the degree of the locking-/resource- con-
tention (at Snow): (i) For an edge {TO + Ti}, it has
the cost CR, which represents the resource-contention
degree of Ti. (CR = the I/O cost that Ti has left be-
fore its commitment.) CR is adjusted when a schedule
proceeds. (ii) If an edge exists from Ti to Tj (i, j # 0),
it has the cost (CL) to represent the locking-contention
degree. (CL = the I/O cost that Tj will have left if
Ti blocks Tj.) We can set up these costs by the
declared transaction-patterns [1 l]. 13

The LOW scheduler always keeps the WTPG that
represents the current scheduling-state. Then, using
this WTPG, LOW works as follows:

[LOW strategy]: Suppose that a lock-request q
is submitted. Then, LOW first computes a function,
E(q) (See Fig.8). E(q) represents how much the con-
tention will occur if LOW grants q now. Next, LOW
grants q (1) if q is not blocked, and (2) if q causes
no deadlock, and (3) if E(q) 5 E(p) for all p, where
p is an access-declaration that conflicts with q on the
requested locking-granule. In the other cases, LOW
blocks or delays q. l? 0

It is clear that this strategy generates a serializ-
able schedule of BTX’s; furthermore, by the above
condition (3), LOW grants only those lock-requests
that keep the ‘locking/resource’ contention in the low-
est level. In this way, the LOW scheduler success-
fully reduces the locking/resource contention in BTX’s

17The delay of p means that the transaction requesting Q
sleeps for a while. The block of q means that the requester
gets blocked. The number of p is limited by an upper
bound K. If the limit is not kept, LOW delays the start
of new transactions. This paper uses LOW where K = 2
because of its better performance [II].

102

v4 1 1” -h--“ File Fi.

,pend

Figure 9: outerjoin-tables & differential queue-file

scheduling. Our work [ll] has demonstrated that
LOW successfully extracts rich concurrency of BTX’s
in various workloads, and that it is much better than
the traditional locking protocols developed for short
transactions.

4.3 Iterative execution

Here we discuss the differential computation of a rule
at the n-th loop; i.e. a rule is recomputed by using the
(n - 1)-th result (for n 1 2). We modify TREAT [2] in
order to process bulk-update operations per loop. Our
method is called OJT (= Using an OuterJoinTable per
rule and differential files shared by rules.)

We discuss only the rule-form of Fig.6: i.e. a multi-
way outerjoin on a common key, followed by aggrega-
tion/grouping. Many DB-DCSP’s are expected to use
this form. Thus we discuss the following case:

For each i(= 1,2, n), consider a base-relation file
Fi (of the schema [Key, Qi]), and its differential file
6Fi (of the schema [Key, newQi]). (6Fi is the set
of ‘update-tuples’, i.e., those tuples that updated Fi
after a given past time.) Then we discuss the case
to recompute the outerjoin (T) of all the Fi’s at a
loop. (7’ = arF1 W . . W a,F,. T has the schema of

[Key,Q1,...,Qnl) I8 0
Now consider applying TREAT to the above case.

Remember that the original TREAT is for a natural
join and keeps two kinds of temporary files: i.e. a join-
result table (called a conflict set) and a selected result
per base relation, UFi (called an a-node); also, in order
to recompute the conflict set, TREAT originally joins
6Fi’S immediately with these files. Thus the original
TREAT has disadvantages in the above case, such as
the large temporary files, indices, and much random
I/O’s caused by bulk-updates.

However, in the above limited rule-form, TREAT re-
ally needs neither o-nodes nor any additional indices

18Qi refers to non-key attributes. Key refers to the key-
attributes. Because of the outerjoin, when T has a tuple t
whose Key = key0 and when .F; has no tuples whose Key
= key0, then Qi = NULL in t. If a tuple is deleted in F;,
the corresponding tuple in 6Fi sets its newQi to NULL.

[OJT method]
INPUT: T = outerjoin-result of ri at (N-1)th loop,
Fi = database file, 6Fi = differential file for Fi.
OUTPUT: 2’ = outerjoin-result at N-th loop.

Phasel: From 6Fi, read out all the tuples, t, in the FIFO
order, where pas(t) 2 F/old. (PM(Z) = position-id of .a
tuple z in 61;;. Void = viewID of Fi that pi used at the
(N-1)th loop.)

Phase2: Let t be each of the above tuples. (Let t have
the value of [Key, newQi]). For all t in the read-out order,
do the following operations (i) to (iii):
(i) Test if t satisfies the selection condition of ri;
(ii) If the test-result is true, then find the tuple J in T,
such that J is equi-joined with t. (Let J have the value
of [Key ,..., oldQi, Qn]);

(iii) Update oldQi to newQi in J. (If T has no matched
tuples with t, then insert a new ‘outerjoin-result’ tuple
including t.)

Phase3: Delete the mark Void from 6Fi. If Vold is the
minimum among the V-marks of 6Fi and if Vminj is the
second minimum there, delete all the tuples t’ from SFi,
such that l&d < pos(t’) < l&in’. Finally, put the new
mark V,,, at the last entry-position of 6Fi. (V& = the
current viewID of Fi locked by Ti.) 0

Figure 10: OJT-method for a rule ri

for join. It is because i) the outerjoin-result, T, in-
cludes all the tuples of E;:; and ii) both T and Fi are
clustered on the key. To reduce tuple-level random
I/O’s, we should also use lazy-evaluation for the join
between a& and T, as often seen [2,15].

From these ideas, our method (OJT) uses the fol-
lowing data-structures: (1) For each rule, we keep its
outerjoin-result Ti as a temporary file. (2) For each
file Fd, we keep its differential file (6Fi) as a FIFO-
queue organization. 6Fi is shared by the rules access-
ing Fi. Fi has its view-identifier (viewID) V. (V is
incremented only when a rule gets an exclusive lock
on Fi.) (3) Wh en a rule (r) wants to update Fi, then
r really updates Fi, and appends the new values of
the updated tuples to 6Fi. At the same time, r puts a
mark V, at the first entry-position of those new tuples
in 6Fi, where V, = the current viewID of Fi. 0

Using these data-structures, Fig.10 describes the
procedure of the OJT-method. Fig.10 is used when
a rule wants to recompute its view from a given 6Fi.
In this figure, Phase 2 is to apply TREAT to our case;
also, Phase 3 is storage deallocation of the (shared)
differential files.

e.g. Fig.9 illustrates the data-structures of OJT and
how it works. In this figure, the two rules (rule1 and
rde0) share the database file Fi. The join-tables (TO
and Tl) and the differential file (SFi) are all clustered
on the key. Assume also that rule1 and rule0 pre-
viously read Fi whose viewID = Vl and VO, respec-

103

tively. Now, consider that rule1 wants to recompute
its view (Tl) and that rule1 has locked Fi whose cur-
rent viewID = V4. Then the procedure of Fig. 10 works
as follows: First, rule1 reads out all the tuples located
after Vl in SFi; next, rule1 re-computes Tl by the
Phase 2 of Fig.10; third, Vl is removed from 6Fi; fi-
nally, rule1 puts the new mark (V4) at the last entry
of 6Fi. rule1 uses the mark V4 at the next loop.0

In the OJT method, bFi can utilize a buffered (and
no-random) I/O. Thus OJT is better than the original
TREAT, because OJT has neither o-node nor random
I/O caused by bulk-update per loop. OJT has another
advantage by declustering SFi on the parallel nodes of
Fig.5; that is, it provides better load-balancing.

4.4 The overall processing method

Until here, we have described the technical solutions
for the database-operations of DB-DCSP. Remember
that we follow the execution-manner of Section 4.1;
thus, by using these elementary solutions, we propose
the following overall method to compute a DB-DCSP
(Fig.4-form code) :
[Method11 At every loop, we use LOW for the
concurrency-control scheduling of the rules. (Each rule
is executed as a Bulk-Accessing Transaction (BTX).)
The first loop executes the rules of Fig.6-fotm. At the
2nd and further loops, every rule uses the OJT method
in order to recompute its view; thus, from the 2nd loop
on, the rules of Fig.ll-form are executed. (Fig.11 is the
step-sequence of a rule using the OJT-method, where
this rule has originally Fig.G-form.) 0

To use Methodl, Fig.6 and Fig.11 need some modi-
fications: (i) At the 1st loop, a rule of Fig.G-form has
to add the following steps: Just after the step3, this
rule needs a step to save the outerjoin-result, T, to
disks; also, the step5 and the step6 include appending
the updated tuples to SIR2 and to SRl, respectively.
(ii) At the 2nd and further loops, a rule of Fig.ll-
form saves the whole (or updated) region of T after
the step3. 0

With the above modifications, we propose Method1
as an efficient and basic computing manner for DB-
DCSP on a parallel database system. We discuss some
extensions later.

5 Preliminary evaluation

This section evaluates the proposed processing-
method (Method1 in Section 4.4) for DB-DCSP. Be-
cause of the space limit, we only summarize the exper-
iments reported in [12].

In addition to Methodl, we test also the following
methods: Method2 (= the same as Method 1, except

STEP
1:
2:
3:
4:

;;

7:

load the outerjoin-table T to main memory.
get X-lock on Rl, and recompute T by SRl.
get X-lock on R2, and recompute T by 6R2.
rank T, and find the tuples to be updated.
update R2, and append the updated tuples to SR2.
update Rl, and append the updated tuples to 6Rl.
commit, and release all the locks.

(Step2 & 3 recompute T by the procedure of Fig.10.)

Figure 11: Step-sequence of a rule using OJT

using Atomic-Static Locking (ASL) instead of LOW)l’
and Method3 (=using the OJT method from the 1st
loop on. ASL is always used as a concurrency control
scheduler .) .20 Method2 represents traditional lock-
ing protocols, and Method3 is the ‘pure’ differential-
computing strategy of traditional rulebases.

The experimental conditions are as follows:
- We extend the EX.l (of Section 2) to that of 8-

areas plus 32-suppliers, and compute this DB-DCSP
problem (of an extended Fig.4-form code) on a simu-
lator of an &node parallel database system. The sim-
ulator has the Fig.5-configuration. It includes a rule-
interpreter, reporting the run-time from the observed
tupleI/O’s. In the .simulation, the multi-programming
level of BTX’s is set to 8; also, a BTX is switched at
a computing-node every time when it has completed
the data-access of l-unit.

- The agents take the strategy that they try to hold
major market-shares at the first two loops, and then
improve their plans.

- The used database has 1200 tuples 21
- To consider the internal parallelism of BTX’s, all

the database files have various Degree of Declustering
(DD = 1 to 4). The differential files (those used in the
OJT method) are also declustered (00’ = 1 to 8).

The following is the experimental results [12]:
For the 1st loop-processing time, LOW

(Mtthod 1) has the best performance; in contrast, the
traditional locking-protocols (= the two-phase lock-
ing protocol(2PL) [l] and the atomic-static locking
(ASL)) perform much worse because of high locking-
contention. (In the experiments, at the 1st loop-
processing, LOW had 1.33 - 1.75 times better perfor-
mance than ASL. We tested also 2PL, but it was worse

lgASL is the two-phase locking protocol in which a BTX
can start only if it gets all the necessary locks.

20Method3 needs the preprocessing that each rule com-
putes its view and saves it. This overhead-time is included
in the 1st loop-time

21Thi~ is small, but our result is valid for much larger
database. It is because all the tested methods use mainly file-
scan; thus the simulation-results can be applied for a large-file
scanning if the ratio of (tuples/CIe) is the same. We have con-
firmed the result in a larger database (about 60000 tuples).

104

than ASL there.). It confirms that LOW is superior
in the scheduling of BTX’s.

2: In particular, when the base-relations have DD of
4 and when the differential files have DD’ of 8 on the
B-nodes system, LOW has very good load-balancing of
these nodes. (When the experiment used Method 1,
the B-nodes had the average utilization-ratio of 87% at
the 1st loop-processing; there, Method 1 was over 1.33
times better than ASL and 2PL).

3: It is not efficient to use only the OJT-method
from the 1st loop on. (In the experiment, at the 1st
loop-processing, Method1 was over 1.57 times better
than Method3.) It is because the rules issue large bulk-
updates at some loops and thus enlarge the I/O cost
of the differential files.

4: From the 2nd loop on, OJT efficiently com-
putes each iteration when compared with the 1st loop-
processing time. (Each loop-processing time was re-
duced to the l/3 or l/4 of the 1st loop-processing
time.) However, further reduction is not achieved even
at a few tuple-updates per loop. This is due to load-
ing/saving the whole outerjoin-result tables, as well as
the access-cost of the shared differential files. 0

These results confirm that, for the large (and par-
allel) database-processing of DB-DCSP, Method 1 is
better than traditional locking protocols (Method 2)
and traditional rulebase stra

6 Discussion

6.1 Extending the a

:gies (Method 3).

gorit hms

Another study [13] of ours have extended OJT, as
follows: (ext.1) The differential files (6F) are multi-
dimensionally clustered; (ext.2) To reduce the load of
join-result tables, we have proposed a ‘current scope’
of a rule. (e.g. in Fig.4, a rule has the current scope
that SUM 1 Rank[i] at a loop.) The scope describes
a strategic preference of an agent. Then, the rule must
load only the data of its ‘current scope’ at a loop. If
necessary, the rule switches its scope to the next one
by scanning its outerjoin-result table.

These extensions can accelerate the original OJT
[13]. In many DB-DCSP’s, we expect that agent-
models use a fixed scope for some loops; thus the ext.2
greatly improves the performance.

The ext.2 is a natural extension of LEAPS [2]
(LEAPS is a rule-base algorithm for database produc-
tion systems.). To reduce the conflict sets, LEAPS
uses a timestamp as a tuple-oriented search-priority,
which cannot be applied to the bulky set-operations
of DB-DCSP’s. Thus the ext.2 has realized such a
priority-scope by an aggregation/group-by function.

6.2 Extended usage of our study

Here we discuss how to use our study with traditional
gaming-simulations [6] or data-mining studies [7].

As described in Section 3.1, our simulation-problem
uses large databases of multi-agent systems with no
miniatured abstractions. On the other hand, many
traditional gaming-simulations do use a small and ab-
stract model for these large databases [6].

Then, how can we find such good abstractions (=
the abstract models above)? Such abstractions are
nothing but significant strategies for the agents; also,
in the early stages of simulations, it is general that we
do NOT know these abstractions exactly. Therefore,
to discover such good abstractions, we must use the
raw history-data of target systems.

The above necessity is a reason why our simulation-
problem directly uses large history-databases. (The
other reason is to test agents’ strategies on real history-
data, as described in Section 1.) That is, by running
gaming-simulations on real (and very large) history-
data, we can discover useful abstractions from the ob-
served log-data in the simulations. After finding such
abstractions, the target systems can be abstracted to
much better and small simulation-models. In this way,
our study supports testing/developing abstractions of
multi-agent systems by using large history-data.

We expect that our gaming-simulations use large
databases of giga-byte size having millions of records.
There are three useful cases to use such a large
database (as described in Section 3.1). In particular,
for the above discovery-applications, the case of simpli-
fied simulations on the time-scale (in Section 3.1) is ef-
fective. It is because this case can easily test the strate-
gies that have global views over a long period. In other
words, the simplified simulations support rapid model-
developing on history-data. (An example is to develop
a group-cooperation model from both the component
models and long-term history-data.) Also, this case
uses roughly-sketched agent-models, and such rough
modeling easily causes bulk-read/bulk-update opera-
tions. Thus our algorithms for BTX’s are significant
especially for this case.

7 Summary and future works

This paper has discussed ‘game-style’ (or gaming-
) simulations of multi-agent systems using large
(history-) databases. We have discussed how to
execute these simulations on a centralized parallel
database system, assuming that it holds all of the
history-data.

The main contribution of this paper is to have clar-
ified the concept of gaming-simulations using large

105

databases. To exemplify it, we have described the sim-
ulation of a multi-agent system using a large ‘current-
state’ database (the case of market-trading game), and
the simulation of a multi-agent cooperative planning
for a long-term period (the city-developing simulation
among multiple policy-makers). Also, we have de-
scribed that our study can simulate such multi-agent
systems on the simplified time-scale; this simplifica-
tion is particularly useful to develop effective behav-
ioral strategies by using long-term history data.

To assert our study, this paper has described the
following contributions:

- To formalize these examples as a distributed
constraint-satisfaction problem on database (DB-
DCSP).

- To propose efficient database algorithms for DB-
DCSP on parallel database systems: i.e. (i) a ded-
icated concurrency-control scheduler for the agents’
transaction-models, and (ii) a TREAT-style algorithm
for iterative execution of these transactions.

Concerning the algorithms, we have clarified, at
first, that an agent is a transaction accessing large
bulks of data (called a BTX). It is because each agent
specifies his behaviors (i.e. decision-making and ac-
tions) by set-oriented criteria on databases. Next,
we have adopted the LOW scheduler [ll] for the
concurrency-control scheduling of BTX’s. LOW has
the good ability to reduce the locking/resource-level
conflicts in the scheduling. For the iterative operation,
we have modified TREAT in order to reduce tempo-
rary files and random I/O’s, This method (OJT) uses
outerjoin-tables with shared differential files. The pre-
liminary experiment has confirmed that our algorithms
outperform both traditional locking protocols and the
straightforward usage of differential computing.

To improve our algorithms, main functions of LOW
should be executed at the compile-time. Also, DB-
DCSP needs extensions for general agent-models [2,3]
and complicated negotiation manners [16]. It is also
interesting to connect our game-style simulations with
data-mining [7], because our simulations use behav-
ioral models of agents and because we should dis-
cover/improve such models from observed data. In
addition, we need a general prototype on a parallel
database system. These are our future works.

Acknowledgement: An early stage of this study was
done when the first author worked for Dept. Information
Science of Kyoto University, JAPAN. He would like to ap-
preciate Prof. Matsumoto in Kyoto U. and his laboratory.

System Performance: Five Case Studies”, Proc. 17th Very
Large Data Bases, pp.287-296 (1991).
[3] Ceri S., Widom J., “Deriving Production Rules for
Incremental View Maintenance”, Proc. 17th Very Large
Data Bases, pp.577-589 (1991).
[4] Dewitt D.J. and Gray J., “Parallel Database Systems:
The Future of Database Processing or a Passing Fad?“,
ACM SIGMOD Record,lS, 4, pp.104-112 (1990).
[5] Durfee E.H., “The Distributed Artificial Intelligence
Melting Pot”, IEEE Trans. syst. Man. Cybern.
Vol.21(No.6), pp.1301-1306 (1991).
[6] Greenblat C.S., Designing Games and Simulations,
SAGE Publications, ISBN o-8029-2956-0, USA (1988).
(Japanese translation by Arai K. et al., KYORITSU Pub.,
ISBN 4-320-02704-3, 1994)
[7] Han J. et al., “Knowledge Discovery in Databases: An
Attribute-Oriented Approach”, Proc.18th Very Large Data
Bases, pp.547-559 (1992).
[8] Kiyoki Y., et al., “Software Architecture of a Parallel
Processing System for Advanced Database Applications”,
Proc. 7th IEEE Int. Conf. Data Engineering, pp.220-229
(1991).
[9] Khoshafian S., et al., A Guide to Developing
Client/Seruer SQL Applications, pp.142-143, Morgan
Kaufmann (1992).
[lo] Nishio S. et al., “Performance Evaluation on sev-
eral cautious schedulers for database concurrency control”,
Proc. 5th Int. Workshop Database Machines, ~~212-225
(1987). (in KnowledgeBase Machines and Database Ma-
chines, Kluwer Academic Pub.).
[II] Ohmori T., Kitsuregawa M., and Tanaka H.,
“Scheduling Batch Transactions on Shared-Nothing Paral-
lel Database Machines”, Proc. 7th IEEE Int. Conf. Data
Engineering, pp.210-219 (1991).
[12] Ohmori T., Matsumoto Y., “Parallel Database Al-
gorithms for Solving the Planning Problems on Very
Large Databases”, Trans. Institute of Electron-
ics,Information&Communication Eng., D-I, Vol.J77(No.8),
pp.577-588, JAPAN (1994). (In Japanese).
[13] Oda,A., “Data-processing algorithms for support-
ing Cooperative planning using databases” (In Japanese),
B.Thesis, Dept. Info. Sci., Kyoto University, JAPAN
(1994). (supervised by the first author)
[14] O’Neil P.E., “The Set Query Benchmark”, Chapter.5
in The Benchmark Handbook for Database and Transaction
Processing, Morgan Kaufmann Publisher (1991).
[15] Richeldi M. and Tan J., “JazzMatch: Fine-Grained
Parallel Matching for Large Rule Sets”, Proc. 9th IEEE
Int. Conf. Data Engineering, pp.616-623 (1993).
[16] Yokoo M., Durfee E.H., Ishida T., Kuwabara K.,
“Distributed Constraint Satisfaction for Formalizing Dis-
tributed Problem Solving”, Proc. 12th IEEE Int. Conf.
Distributed Computing Systems, 1992.

Appendix.A
[Cost Model of a BTX]: For a given BTX, when its

read-step reads N-units of data-access, the I/O (= disk
Input/Output access) cost of the step is set to N. When
a write-step updates N-units, the step has the cost of 2N.
We neglect the I/O cost between the commitment of a
BTX and its completion. (The unit is the data-unit of
file-scanning, such as a constant number of disk tracks.) 0

References
[I] Agrawal R., “Models for Studying Concurrency Control
Performance: Alternatives and Implications”, Proc. ACM-
SIGMOD ‘85, pp.108-121 (1985).
[2] Brant D.A., et al., “Effects of Database Size on Rule

106

