
- 97 -

Keyword Search over Hybrid XML-Relational Databases
Liru Zhang 1 Tadashi Ohmori 1 and Mamoru Hoshi 1

1Graduate School of Information Systems, The University of Electro-Communications, Tokyo, Japan
(Tel : +81-42-443-5618; E-mail: {zhangliru,omori} @ hol.is.uec.ac.jp)

Abstract: How to realize keyword search over XML databases (XML DB) or relational databases (RDB) is a today's
hot topic. In this paper, we first point out that existing keyword-search methods over those databases cannot get
sufficient results. Then, we propose a new keyword-search method over hybrid XML-Relational databases, and
demonstrate that its answers are better than those of existing techniques. We propose a new join-operator for XML data,
and utilize the new operator to enable keyword search in hybrid XML-Relational databases.

Keywords: hybrid database, keyword search, XML

1. INTRODUCTION

1.1 Background and Objective
Keyword search is a new popular function of

databases to retrieve information by user-given
keywords. A variety of semi-structured data, such as
web contents expressed in XML (eXtensible Markup
Language) format, has been stored in structural
databases. Recently, major RDB management systems
(e.g. [7], IBM DB2 V9 [9],) allow the residence of XML
format data in relational tables. The RDB with tables
including XML data is called a hybrid XML-Relational
database (hybrid DB).

Currently, there are several keyword search methods
over pure XML DB or traditional RDB such as
DBXplorer [1], XRANK [2]. This paper firstly clarifies
that these existing known methods cannot get sufficient
answers. Next, we propose a new method which uses
hybrid XML-Relational databases for getting enough
answers.

1.2 Our goal

Our goal is to obtain more reasonable answers of
keyword search over hybrid DB than XML DB or RDB
does. To achieve it, we make good use of hierarchy of
XML in hybrid tables (which contain XML format data).
The following example illustrates a case of new
challenge.

Example: Consider the hybrid database in Figure 1,

which belongs to a search engine for digital library. The
database includes two hybrid tables (Conference,
Authors) and one relational table (Paper). We refer to
all data formats except XML as relational data. In the
hybrid table Conference, information of conference is
listed as XML format, whose hierarchy is
“Conf-Session-Paper”. The relationship of Conference
and Session is one to many, like several branches from a
root of tree, and the relationship of Session and Paper is
also one to many. In another hybrid table Authors,
author information is listed as XML format of hierarchy
“Author-Paper”, which means the root of this XML is
Author. The relationship of Authors and Paper is many
to many, that is stored in a relationship table between
Authors and Paper. The table Paper contains the detail
of each paper such as id, title and so on.

Suppose a user wants to know about some relevance
between an author named “Sanjay” and a subject of
study about “link”. We use the notation Query = {Sanjay,
link} to express the set of query keywords “Sanjay” and
“link”. The user can issue Query = {Sanjay, link} to
obtain a list of answers. As usual, if a writer named
“sanjay” has written a paper or a book about “link”, it is
easy to get this answer. In our study, another new case
of answers should be also obtained. As shown in Figure
1, one of such answers should include two tuples
(Conference: V04) and (Authors: A002) containing the
query keywords.

Figure 1 An example of keyword search over a hybrid DB

SICE Annual Conference 2008
August 20-22, 2008, The University Electro-Communications, Japan

PR0001/08/0000-0097 ¥400 © 2008 SICE
Authorized licensed use limited to: UNIVERSITY OF ELECTRO COMMUNICATIONS. Downloaded on June 26, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

- 98 -

This answer of Figure 1 is depicted in blue lines, and
it means that an author named “Sanjay” has written a
paper, which has been published at a conference titled
“VLDB 2004”, and the conference has a session named
“link analysis”. Based on the relationship of the two
tuples described above, our study chooses this answer
by two kinds of join operation; one is to join XML data
with relational data, and another is a foreign-key join
between relational data.

This paper focuses on how to search for all the above
appropriately-related information on hybrid XML-
Relational databases. The rest of this paper is organized
as follows. In Section 3, we make a keyword search
comparison between XML DB and RDB. In Section 4,
we present our new solution of keyword search over
hybrid XML-Relational databases, and describe the
processing component responsible for joining XML data
with relational data (called XRjoin by us). And
conclusions are given in Section 5.

2. RELATED WORKS

Many research efforts have studied the problem of

keyword search over traditional RDB. Examples include
[3, 5, 6]. They are based on the basic approach of
DBXplorer [1], a fundamental solution for RDB.
Keyword search over XML data has also attracted
attention (e.g. [8]) and one of the most outstanding
studies is XRANK [2]. We analyze merits and demerits
of the techniques of DBXplorer [1] and XRANK [2] in
Section 3.

Another approach in the literature is to process a
keyword query on a weighted graph [4]. According to
the database schema, tuple instances are mapped to a
graph model. It finds connections of nodes where
keywords occur on the graph for answer. In contrast, our
approach is to find a sub-tree (called join tree) in the
schema graph that contains tables as nodes. Then we
construct join statements (XRjoin and foreign-key join)
to select tuple sets that include all keywords (see
Section 4).

3. ANALYSIS OF EXISTING KEYWORD

SEARCH METHODS

3.1 XML DB
The eXtensible Markup Language (XML) is a

general-purpose specification for creating custom
markup languages, which allows users to define their
own elements. In this paper, we express the contents of
the table Conference in Figure 1 as an XML document
of Figure 2.

The biggest element is “Conferences” which includes
a lot of child-elements “Conference”. Each “Confer-
ence” contains one “C_title” and many child elements
“Session”, and each “Session” contains one “S_title”
and many child-elements “Paper”.

Figure 2 The XML document of Conference

Based on the same contents, Figure 3 indicates the

tree structure of Figure 2. In the tree structure, the root
node is “Conferences” still. The hierarchy of the tree
structure lets the relationship between elements be
easily understood.

Figure 3 The tree structure of Conference

Keyword search over XML DB returns sub-trees of

an XML tree structure, each of which includes all query
keywords. As an illustration, consider Query = {link,
database} issued on the XML in Figure 3. One of the
results is the sub-tree in the blue line in the figure,
whose root is the “Session” element in the blue box
because it contains the two query-keywords in red
circles of Figure 3.

XRANK [2] can find such answer sub-trees as
described above. The tree structure makes search easy,
when the relation of nodes containing query keywords
can be presented as edges in answer sub-trees. We can
easily discover the relevance of user-given keywords,
based on the hierarchy of answer sub-tree.

However, XRANK [2] can only get an answer formed
by a sub-tree. Thus, if there are relations of contents
containing query keywords that cannot be connected on
a sub-tree, XRANK [2] cannot get such information as
an answer.

<?xml version= 1.0 >
<Conferences>

<Conference cid=”V04”>
<C_title>VLDB2004</C_title>
<Session sid=”S004”>

<S_title> … </S_title>
<Paper pid =”P004”>

<title>…</title>
<keywords>…</keywords>

</Paper>…
</Session>…

</Conference>…
</Conferences>

Authorized licensed use limited to: UNIVERSITY OF ELECTRO COMMUNICATIONS. Downloaded on June 26, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

- 99 -

Figure 4 An unavailable answer of XML DB

For instance, suppose that Query = {DBXplorer, link}.

Then it is difficult to obtain the answer (two sub-trees)
shown in Figure 4, because the two sub-trees are
connected by a citation link. The citation link is
presented by a red arrow in Figure 4. Existing methods
of XML DB cannot find this type of answers.

3.2 RDB

On the other hand, RDB places information into
tables, based on a relational schema modeling method,
Entity-Relationship (ER) model. Storing the same
contents of Figure 1, we suggest the ER model for RDB
in Figure 5.

Figure 5 Entity-Relationship model

The ER model consists of four entities (Conference,

Session, Paper, Authors) and three relationships
(Conf-Sess, Sess-Paper, Paper-Author). Because of
database normalization, the hierarchy “Conference-
Session-Paper” has been divided into five parts
(Conference, Session, Paper, Conf-Sess, Sess-Paper).

The approach of DBXplorer [2] is to look up a
preprocessing index table to identify the tables where
keywords occur, firstly. Then, all potential subsets of
tables in the RDB are enumerated, that might contain all
keywords. For each subset of tables, there is a sub-tree
in the schema graph that contains these tables as nodes.
These sub-trees are referred to as join trees. Along a
join-tree, the subsets of tables can be joined.

Finally, for each enumerated join tree, a SQL
statement is generated and executed. The results are
selected and presented to the user.

As shown in Figure 6, given a Query = {commercial,
SQL}, we can find a result of tuple sets including
Paper: P004, Session: S004 and Sess-Paper: S004. The
tuples (Paper: P004, Session: S004) have keywords
“commercial” and “SQL” respectively, and are selected
because of the tuple of relationship Sess-Paper: S004.

Figure 6 An example of keyword search over RDB

This method is effective when keywords occur in

different entities which are connected with each other
by relationships or when keywords exist in one tuple of
the same entity.

 However, we cannot obtain an answer, when
keywords exist in different tuples of the same entity.
Figure 7 shows this situation.

Figure 7 is an answer tuple set which cannot be
obtained by the approach mentioned above. Query =
{integrate, SQL} consists of K1 “integrate” in Paper:
P007 and K2 “SQL” in Paper: P004. Since P004 and
P007 are in the same entity, the relationship Sess-Paper
and the entity Session will not be used to do foreign-key
join between P004 and P007. Thus the answer will be
lost shown in the blue dot lines, although it means that
P004 and P007 containing “integrate, SQL” have been
published in the same session S004.

Figure 7 An unavailable answer of RDB

Note that in case of XML DB, the above sub-tree can

be obtained, which is rooted by Session S004 containing
the Papers P004 and P007.

Unlike XML DB, RDB finds answers of keyword
search by using relationships to join and select tuple sets.
The above answer tuple sets ought to be found, because
contents of XML have been exploited to be stored in
appropriate tables. However, DBXplorer [2] does not
consider such important hierarchical information when
building a join tree. So RDB cannot get appropriate
answers in the case of Figure 7.

Concerning keyword search over XML data and
relational data, we utilize the tables containing XML
data and propose a new method to retrieve information
effectively.

4. USING HYBRID XML-RELATIONAL

DATABASES

Authorized licensed use limited to: UNIVERSITY OF ELECTRO COMMUNICATIONS. Downloaded on June 26, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

- 100 -

4.1 Approach of keyword search
Since XML data can reside in tables of RDB, we

propose a new function to deal with keyword-based
search for hybrid DB systems. Based on some
techniques of DBXplorer [1], we offer a solution for
hybrid DBs as follow.

Firstly, we design the schema for hybrid DBs from
the ER model of traditional RDBs. According to the
feature of XML data, in the example of this paper, we
utilize “XML1” as an XML format which contains
entities (Conference, Session) and relationships
(Conf-Sess, Sess-paper) in ER of RDB (see Figure 8),
and use “XML2” which contains (Authors,
Paper-Author). The details of papers are stored in the
relational entity Paper still. Notice that there are only
the ids of papers to be presented in XMLs.

Figure 8 The data corresponding to XMLs in RDB

The ER model for hybrid DB has been made as

shown in Figure 9. The new hybrid tables are
“Conference” and “Authors” which contain XMLs.

Figure 9 The ER model for hybrid DB

Secondly, to enable keyword search in hybrid DB, we

make use of an auxiliary table that identifies entities
containing query keywords. If a possible keyword exists
in a node (v) of an XML, we store the table name, the
attribute name and the ids of all ancestor nodes of the
node (v). For example, as shown in Figure 11(a), the
information to be stored for a keyword “tuning” is the
table name Conference, the attribute name XML1, and
the ancestor node ids S004 and V04. Additionally, if a
tuple-id of relational data exists in an XML, we store
the table name, the attribute name, the tuple id and all
ancestor- node ids of the tuple id. This auxiliary table is
looked up to identify the tables of the database that
contain the query keywords.

Then, when keywords are given, all potential subsets
of tables in the database are identified and enumerated.
These subsets can be joined only if they are connected
in the schema as join trees. Based on the example data
of this paper, Figure 10 shows an instance of
enumerated join trees by the way of DBXplorer [1]. In
Figure 10, each keyword of Query = {K1, K2} exists in
the schema twice. So we enumerate four types of join
trees.

Next, if join trees include hybrid entity containing
XML data, it is necessary to solve the problem of
joining XML data with relational data. We define a new

operator XRjoin (see subsection 4.2) to construct a new
hybrid table which contains appropriate sub-trees of
XMLs and essential relational data. The result table of
XRjoin is a hybrid entity, and thus it is used for
succeeding join operations in a join-tree.

Figure 10 An example of enumerated join trees

Finally, for each enumerated join tree, a SQL/XML

statement is constructed and is executed. It joins the
tables in the tree and selects those rows containing all
query keywords. The final rows are provided for the
user.

4.2 XRjoin

We produce XRjoin to select tuple sets from XML
data and relational data. We describe XRjoin in detail in
this subsection.

Figure 11 (a) Before XRjoin

Authorized licensed use limited to: UNIVERSITY OF ELECTRO COMMUNICATIONS. Downloaded on June 26, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

- 101 -

(b) After XRjoin

 Figure 11 An instance of XRjoin

Firstly, we present an illustration of concrete contents

before and after XRjoin in order to show our idea
clearly. The instance of Figure 11(a) comes from No.2
join tree of Figure 10.

Consider the simplified XML tree of Conference
VLDB 2004 (whose id is CID: V04) in Figure 11(a).
The figure shows one keyword K1 “tuning” in a red
circle and another keyword K2 “base” in a blue circle,
which are stored in the hybrid entity Conference and
the relational entity Paper, respectively. In contrast, the
result of XRjoin in Figure 11(b) is one hybrid entity;
this table has two tuples (rows) as answers, each of
which contains K1 and K2.

In each tuple of Figure 11(b), the attribute XML1’
has a reconstructed tree. This tree is a part of the XML
tree in hybrid entity Conference of Figure 11(a). The
tree of XML1’ has two parts. One is the path of
keyword K1 “tuning” shown in a red line and the other
is the path of “PID” shown in a blue line. This “PID” is
the tuple ID of relational data containing K2 “base”. We
extract these paths from the original XML1 of Figure
11(a), and reconstruct the tree XML1’ in Figure 11(b).
In this way, we can select the answer tuple sets of
Figure 11(b) containing all query keywords.

Next, we describe the general model of XRjoin.

Figure 12 Operand Entities of XRjoin

Figure 12 is a pair of operand entities of XRjoin, a

hybrid entity and a relational entity. PID is a tuple id in
the relational entity “R” and it is also a node of XML
tree in the hybrid entity “X”. In the relational entity “R”,
we use an attribute of CID to present the one-to-many
relationship between CID and PID. In Figure 12 and

Figure 13Figure 12, the circle symbol means a node
(XML element), and the box symbol means the root
node.

In Figure 12, assume we have known two keywords
K1 and K2 hit the hybrid entity “X”, and this XRjoin is
referred to as XRjoin(X, R).

Figure 13 is a result of the XRjoin. Generally, the
result has its attribute “x” having a sub-tree, which has
paths from nodes of keywords and nodes of joined
tuple-ids to their nearest common ancestor. To put it
concretely, in Figure 13, the attribute “x” is constructed
by two paths (shown in orange and red) from the two
keyword nodes satisfying K1 or K2 and the blue path
from one ID (which corresponds to id of one tuple in
relational entity “R”). We also add the path from the
nearest common ancestor to the root node of the original
XML in “x”. The tuple sets of Figure 13 provide all
relevant information of both the hybrid entity “X” and
the relational entity “R”, when the keywords K1 and K2
exist in the XML of the hybrid entity “X”.

Figure 13 Result Entity of XRjoin

In this way, an XRjoin operator puts the appropriate

tuple sets into a new hybrid entity, which contain
reconstructed sub-trees of the XML.

As an implementation of XRjoin, we first look up
query keywords in the auxiliary table, and then we
extract the nearest common ancestors by comparing
ancestor ids stored in the auxiliary table by SQL/XML
queries. Last, necessary sub-trees are constructed and
appropriate tuple sets are selected.

Finally, we show XRjoin plays an important role to
execute a join tree.

Figure 14 join steps by No.4 join tree of Figure 10

Authorized licensed use limited to: UNIVERSITY OF ELECTRO COMMUNICATIONS. Downloaded on June 26, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

- 102 -

Figure 14 is the join tree of No.4 of Figure 10, written

by XRjoins and a foreign-key join. In this case we must
consider that the foreign-key join must wait for
XRjoin’s turn. Figure 14 shows that we firstly do
XRjoin twice to refine tuple sets containing the query
keywords and then execute the foreign-key join using a
SQL statement to select the answer tuple sets.

In practice, Figure 14 presents the join tree for getting
the answer of Figure 1 by our method.

5. CONCLUSION

In this paper, we firstly described that the existing

keyword-search methods of XML DB or RDB cannot
get sufficient results. Then we proposed a new
keyword-search method of hybrid XML-Relational
databases to retrieve information on both XML data and
relational data. As a major idea, we proposed a new
operator XRjoin, which joins XML data with relational
data. By using XRjoins, we showed that a modified
join-tree can get new better answers that contain both
relationship information and hierarchy information in a
hybrid XML-Relational database.

Our current implement is done on IBM DB2 v9 [9].
We are currently improving implementation of XRjoin
operators. An algorithm of generating appropriate
join-trees is also under our improvement.

REFERENCES

[1] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das,
“DBXplorer: A System for Keyword-Based Search over
Rela-tional Databases”, Proceedings of the 18th
International Conference on Data Engineering, pp.05-17,
2002.
[2] Lin Guo, Feng Shao, Chavdar Botev, Jayavel
Shanmugasundaram, “XRANK: Ranked Keyword
Search over XML Documents”, Proceedings of the
ACM SIGMOD International Conference on
Management of Data, pp.16-27, 2003.
[3] Mayssam Sayyadian, Hieu LeKhac, AnHai Doan,
Luis Gravano, “Efficient Keyword Search Aross
Heterogeneous Relational Databases”, Proceedings of
the 23rd International Conference on Data Engineering,
pp.346-355, 2007.
[4] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin,
Xiao Zhang, Xuemin Lin, “Finding Top-k Min-Cost
Connected Trees in Databases”, Proceedings of the 23rd
International Conference on Data Engineering,
pp.836-845, 2007.
[5] Andrey Balmin, Vagelis Hristidis, Yannis Papakon
stantinou, “ObjectRank: Authority-Based Keyword
Search in Databases”, Proceedings of the Thirtieth
International Conference on Very Large Data Bases,
pp.564-575, 2004.
[6] G.Bhalotia, A.Hulgeri, S.Chakrabarti, S.Sudarshan,
“Keyword searching and browsing in databases using
BANKS”, Proceedings of the 18th International

Conference on Data Engineering, pp.431-440, 2002.
[7] Mirella M.Moro, Lipyeow Lim, Yuan-Chi Chang,
“Schema Advisor for Hybrid Relational-XML DBMS”,
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp.959-970, 2007.
[8] S.Amer-Yahia, E.Curtmola, A.Deutsch, “Flexible
and efficient XML search with complex full-text
predicates”, Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp.
575-586, 2006.
[9] IBM DB2 Database Information Center,
“http://publib.boulder.ibm.com/infocenter/db2luw/v9/”

Authorized licensed use limited to: UNIVERSITY OF ELECTRO COMMUNICATIONS. Downloaded on June 26, 2009 at 03:35 from IEEE Xplore. Restrictions apply.

